Final Environmental Impact Statement:
Replacement Robley Rex VA Medical Center
Louisville, Kentucky

U.S. Department of Veterans Affairs
Louisville VA Medical Center

April 2017
ABSTRACT

LEAD AGENCY: U.S. Department of Veterans Affairs (VA), Robley Rex VA Medical Center (VAMC)

COOPERATING AGENCIES: None

TITLE OF PROPOSAL: Replacement Robley Rex VA Medical Center, Louisville, Kentucky

AFFECTED JURISDICTION: Western Kentucky, Southern Indiana

POINT OF CONTACT: Robley Rex VAMC, Attn: Replacement VAMC Activation Team Office, 800 Zorn Avenue, Louisville, KY 40206; LouisvilleReplacementHospitalComments@va.gov; or Judy Williams, Public Affairs Officer, at the same address; (502) 287-4000, ext. 55502; Judy Williams@va.gov.

PROPOSPONENT: Louisville VA Medical Center

DOCUMENT DESIGNATION: Draft Environmental Impact Statement (EIS)

VA proposes to site, construct, and operate a VA Medical Center (VAMC) and regional Veterans Benefits Administration (VBA) office to replace the existing Robley Rex VAMC, a leased VBA office, and three of eight regional community-based outpatient clinics. The facilities to be replaced have reached the end of their serviceable lives. The replacement campus is needed to provide sufficient capacity to meet the current and projected future healthcare needs of Veterans in the Louisville service area. This EIS analyzes the potential impacts of three alternatives for the replacement VAMC.

Alternative A proposes construction and operation of a replacement VAMC campus at the Brownsboro Site at 4906 Brownsboro Road, Louisville, Kentucky. Alternative B would construct and operate a replacement VAMC campus at the St. Joseph site on a parcel located east of I-265 and south of Factory Lane in Louisville. Alternative C is the No Action alternative, which is required by the National Environmental Policy Act and its regulations and also provides a baseline for comparing potential impacts from the action alternatives.

VA’s preferred alternative is Alternative A, the proposed construction and operation of a replacement VAMC campus at the Brownsboro Site at 4906 Brownsboro Road, Louisville. VA would relocate medical facility operations to the Brownsboro Site from Zorn Avenue and a later process would evaluate the future use or disposition of the Zorn Avenue property. Leases would not be renewed for three community-based outpatient clinics and the existing VBA regional office, whose services would be consolidated within the replacement VAMC.

The EIS describes mitigation measures for the potential impacts to environmental resources that are identified in the impact analysis. Unavoidable adverse impacts include effects to air quality, aesthetics, noise, land use, solid waste and hazardous materials, utilities, and transportation and traffic. With the exception of aesthetics and land use, implementation of specified mitigation measures would substantially decrease the magnitude of these impacts.
This page intentionally left blank.
TABLE OF CONTENTS

ABSTRACT... i

ACRONYMS AND ABBREVIATIONS ... xiii

EXECUTIVE SUMMARY .. xvii

Table ES-1: Summary of Impact Analysis ... xxi

1.0 INTRODUCTION, INCLUDING PURPOSE AND NEED.. 1

1.1 Robley Rex Veterans Affairs Medical Center ... 1

1.1.1 Veterans in the Louisville Service Area ... 1

1.1.2 Services and Facilities.. 1

1.2 Purpose of and Need for a Replacement Facility.. 3

1.3 Related NEPA Documents and Scope of this EIS .. 5

1.4 Relevant Federal Statutes, Regulations, and Executive Orders .. 7

1.5 Organization of this Environmental Impact Statement ... 10

2.0 ALTERNATIVES... 13

2.1 Development of Alternatives .. 13

2.1.1 Site Selection Process .. 14

2.1.2 Conceptual Design .. 18

2.2 Description of the Alternatives ... 21

2.2.1 Components Common to Both Action Alternatives ... 21

2.2.1.1 Site Organization and Appearance ... 24

2.2.1.2 VA Medical Center ... 27

2.2.1.3 VBA Regional Office Building ... 27

2.2.1.4 Central Utility Plant .. 27

2.2.1.5 Geothermal System for VBA Building ... 28

2.2.1.6 Laundry ... 29

2.2.1.7 Site Lighting .. 29

2.2.1.8 Parking Decks ... 29

2.2.1.9 Physical Security Measures ... 30

2.2.1.10 Site Landscaping ... 30

2.2.1.11 Mitigation Measures and Best Management Practices ... 30

2.2.2 Alternative A – Replacement VAMC at Brownsboro Site ... 31

2.2.2.1 Site Organization and Appearance... 31

2.2.2.2 Site Access and Circulation .. 34

2.2.2.3 Service and Deliveries .. 34

2.2.2.4 Stormwater Management .. 35

2.2.2.5 Utilities ... 35

2.2.2.6 Sanitary Sewer .. 35

2.2.2.7 Natural Gas ... 36

2.2.2.8 Communications ... 36

2.2.2.9 Electricity .. 36

2.2.3 Alternative B – Replacement VAMC at St. Joseph Site ... 38

2.2.4 Alternative C - Continue Operating from Existing VAMC (No Action) 43

2.3 Alternatives Identified but Not Evaluated in Detail ... 45

2.3.1 Fegenbush Site ... 45

2.3.2 Downtown Site ... 46
2.3.3 Reconfiguration of Existing VAMC ... 47
2.3.4 Alternative Site Concepts ... 49
2.3.5 Alternatives not within Scope .. 49
2.4 Comparison of Environmental Impacts of Alternatives 50
2.5 VA’s Preferred Alternative .. 50
2.6 Environmentally Preferable Alternative .. 50

3.0 AFFECTED ENVIRONMENT ... 63
3.1 Aesthetics ... 65
 3.1.1 Regulatory and Policy Framework .. 65
 3.1.1.1 VA Guidance ... 66
 3.1.1.2 Local Design Standards ... 65
 3.1.2 Current Conditions .. 65
 3.1.2.1 Brownsboro Site .. 66
 3.1.2.2 St. Joseph Site ... 66
 3.1.2.3 Existing Zorn Avenue VAMC ... 66
3.2 Air Quality .. 67
 3.2.1 Regulatory and Policy Framework .. 67
 3.2.1.1 National Ambient Air Quality Standards 67
 3.2.1.2 Clean Air Act Title V Operating Permit Requirements 68
 3.2.1.3 New Source Review .. 68
 3.2.1.4 State and Local Regulations and Coordination 68
 3.2.2 Current Conditions .. 69
 3.2.2.1 Regional Climate ... 69
 3.2.2.2 Regional Attainment Status for National Ambient Air Quality Standards 69
 3.2.2.3 Emission Sources .. 70
 Regional Sources .. 70
 Louisville VAMC Facility Emissions .. 70
3.3 Cultural Resources ... 73
 3.3.1 Regulatory and Policy Framework .. 73
 3.3.2 Current Conditions .. 73
 3.3.2.1 Brownsboro Site .. 73
 3.3.2.2 St. Joseph Site ... 76
 3.3.2.3 Existing Zorn Avenue VAMC ... 78
3.4 Geology and Soils .. 81
 3.4.1 Regulatory and Policy Framework .. 81
 3.4.2 Current Conditions .. 82
 3.4.2.1 Regional Physiology and Seismicity ... 82
 3.4.2.2 Brownsboro Site .. 83
 3.4.2.3 St. Joseph Site ... 87
 3.4.2.4 Existing Zorn Avenue Facility ... 91
3.5 Hydrology and Water Quality ... 95
 3.5.1 Regulatory Framework .. 95
 3.5.1.1 Clean Water Act ... 95
 3.5.1.2 Energy Independence and Security Act 95
 3.5.1.3 State and Local Regulations ... 96
 3.5.2 Current Conditions .. 96
 3.5.2.1 Brownsboro Site .. 96
 3.5.2.2 St. Joseph Site ... 97
 3.5.2.3 Existing Zorn Avenue Facility ... 98
3.6 Wildlife and Habitat ... 99
4.1.3.1 Construction .. 179
4.1.3.2 Operation ... 179
4.1.4 Alternative C: No Action ... 181
 4.1.4.1 Construction ... 181
 4.1.4.2 Operation .. 181
4.2 Air Quality ... 183
 4.2.1 Evaluation Criteria ... 183
 4.2.2 Alternative A: Brownsboro Site ... 183
 4.2.2.1 Construction .. 183
 4.2.2.2 Operation ... 184
 4.2.3 Alternative B: St. Joseph Site ... 187
 4.2.3.1 Construction .. 187
 4.2.3.2 Operation ... 187
 4.2.4 Alternative C: No Action ... 188
 4.2.4.1 Construction .. 188
 4.2.4.2 Operation ... 188
4.3 Cultural Resources .. 189
 4.3.1 Evaluation Criteria ... 189
 4.3.2 Alternative A: Brownsboro Site ... 189
 4.3.2.1 Construction .. 189
 4.3.2.2 Operation ... 190
 4.3.3 Alternative B: St. Joseph Site ... 191
 4.3.3.1 Construction .. 191
 4.3.3.2 Operation ... 191
 4.3.4 Alternative C: No Action ... 192
4.4 Geology and Soils .. 193
 4.4.1 Evaluation Criteria ... 193
 4.4.2 Alternative A: Brownsboro Site ... 193
 4.4.2.1 Construction .. 193
 4.4.2.2 Operation ... 196
 4.4.3 Alternative B: St. Joseph Site ... 197
 4.4.3.1 Construction .. 197
 4.4.3.2 Operation ... 197
 4.4.4 Alternative C: No Action ... 197
 4.4.4.1 Construction .. 197
 4.4.4.2 Operation ... 197
4.5 Hydrology and Water Quality ... 199
 4.5.1 Evaluation Criteria ... 199
 4.5.2 Alternative A: Brownsboro Site ... 199
 4.5.2.1 Construction .. 199
 4.5.2.2 Operation ... 201
 4.5.3 Alternative B: St. Joseph Site ... 203
 4.5.3.1 Construction .. 203
 4.5.3.2 Operation ... 204
 4.5.4 Alternative C: No Action ... 204
 4.5.4.1 Construction .. 204
 4.5.4.2 Operation ... 204
4.6 Wildlife and Habitat .. 205
 4.6.1 Evaluation Criteria ... 205
 4.6.2 Alternative A: Brownsboro Site ... 206
 4.6.2.1 Construction .. 206
4.6.2.2 Operation
4.6.3 Alternative B: St. Joseph Site
 4.6.3.1 Construction
 4.6.3.2 Operation
4.6.4 Alternative C: No Action
 4.6.4.1 Construction
 4.6.4.2 Operation
4.7 Noise
 4.7.1 Evaluation Criteria
 4.7.2 Alternative A: Brownsboro Site
 4.7.2.1 Construction
 4.7.2.2 Operation
 4.7.3 Alternative B: St. Joseph Site
 4.7.3.1 Construction
 4.7.3.2 Operation
 4.7.4 Alternative C: No Action
 4.7.4.1 Construction
 4.7.4.2 Operation
4.8 Land Use
 4.8.1 Evaluation Criteria
 4.8.2 Alternative A: Brownsboro Site
 4.8.2.1 Construction
 4.8.2.2 Operation
 4.8.3 Alternative B: St. Joseph Site
 4.8.3.1 Construction
 4.8.3.2 Operation
 4.8.4 Alternative C: No Action
 4.8.4.1 Construction
 4.8.4.2 Operation
4.9 Floodplains and Wetlands
 4.9.1 Evaluation Criteria
 4.9.2 Alternative A: Brownsboro Site
 4.9.3 Alternative B: St. Joseph Site
 4.9.4 Alternative C: No Action
4.10 Socioeconomics
 4.10.1 Evaluation Criteria
 4.10.2 Methodology
 4.10.3 Alternative A: Brownsboro Site
 4.10.3.1 Construction
 4.10.3.2 Operation
 4.10.4 Alternative B: St. Joseph Site
 4.10.4.1 Construction
 4.10.4.2 Operation
 4.10.5 Alternative C: No Action
4.11 Community Services
 4.11.1 Evaluation Criteria
 4.11.2 Alternative A: Brownsboro Site
 4.11.2.1 Construction
 4.11.2.2 Operation
 4.11.3 Alternative B: St. Joseph Site
 4.11.3.1 Construction
5.0 MITIGATION

5.1 Aesthetics

5.2 Air
List of Tables

Table ES-1. Summary of Impact Analysis ... xxi
Table 2-1. Summary of Site Characteristics of Initial Alternatives 15
Table 2-2. Departments Proposed for Replacement Louisville VAMC 23
Table 2-3. Proposed Milestones for Construction and Operation Alternative A (Preliminary) 37
Table 2-4. Proposed Milestones for Construction and Operation Alternative B (Preliminary) 42
Table 2-5. Summary of Impact Analysis ... 51
Table 3.2-1. Description of Title V Permitted Units .. 68
Table 3.2-2. 2014 National Emissions Inventory Data ... 71
Table 3.4-1. Soils: Brownsboro Site .. 84
Table 3.4-2. Soils: St. Joseph Site ... 89
Table 3.4-3. Soils: Existing Zorn Avenue VAMC Campus 93
Table 3.6-1. Federally and State Listed Species in Jefferson County, Kentucky 100
Table 3.7-1. Noise Levels Associated with Typical Construction Equipment 107
Table 3.7-2. Summary of EPA-Recommended Noise Level Standards 107
Table 3.7-3. Existing Sound Level Measurements .. 109
Table 3.7-4. Noise-Sensitive Receptors in Brownsboro Site Area 111
Table 3.7-5. Noise-Sensitive Receptors in St. Joseph Site Area =========================== 111
Table 3.7-6. Noise-Sensitive Receptors in Zorn Avenue Site Area 113
Table 3.10-1. Historical, Current, and Projected Population 130
Table 3.10-2. Projected Veteran Population in Louisville Catchment Area 131
Table 3.10-3. Housing Units and Occupancy Rate ... 131
Table 3.10-4. Owner-Occupied and Renter-Occupied Housing 132
Table 3.10-5. Median Value of Housing and Median Contract Rent 132
Table 3.10-6. Income Characteristics ... 133
Table 3.10-7. Labor Force and Employment .. 134
Table 3.10-8. Unemployment and Unemployment Rate ... 134
Table 3.10-9. Number of Establishments and Employees by Industry Sector for Louisville/Jefferson County Metro Government for 2013 .. 135
Table 3.10-10. Louisville Metro Area Crime Statistics from 2007 to 2014 136
Table 3.13-1. Current (2015) Level of Service and Delay at Signalized Intersections – Brownsboro Site ... 150
Table 3.13-2. Current (2015) Travel Time Results – Brownsboro Site 150
Table 3.13-3. Existing (2015) Level of Service and Delay at Signalized Intersections – St. Joseph Site 151
Table 3.13-4. Existing (2015) Travel Time Results – St. Joseph Site 153
Table 3.13-5. Existing (2015) Level of Service and Delay at Signalized Intersections – Existing Zorn Avenue Site .. 153
Table 3.13-6. Current (2015) Travel Time Results – Existing Zorn Avenue Facility ... 153
Table 3.15-1. Populations of Concern, Kentucky Counties in Louisville VAMC Service Area 163
Table 3.15-2. Poverty Information, Kentucky Counties in Louisville VAMC Service Area 164
Table 3.15-3. Populations of Concern, Indiana Counties in Louisville VAMC Service Area 165
Table 3.15-4. Poverty Information, Indiana Counties in Louisville VAMC Service Area 165
Table 3.15-5. Comparison of Minority and Low Income Populations within 1 and 3 Mile Radius 167
Table 4.2-1. Estimate of Annual Particulate Emissions from Construction 183
Table 4.10-1. Alternative A, Construction Phase Economic Impacts Within Louisville MSA 229
Table 4.10-2. Alternative A, Operation Phase Economic Impacts Within Louisville MSA 230
Table 4.13-1. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – Brownsboro Site .. 244
Table 4.13-2. Future (2025) Travel Time Results – Brownsboro Site 247
Table 4.13-2A Future (2025) Design Hourly Volumes - Brownsboro Site 248
Table 4.13-3. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – St. Joseph Site
Table 4.13-4. Future (2025) Travel Time Results – St. Joseph Site
Table 4.13-5. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – Zorn Avenue (Existing Site)
Table 4.13-6. Future (2025) Travel Time Results – Existing Zorn Avenue Facility
Table 4.16-1 Future (2025) Design Hourly Volumes - St. Joseph Site
Table 4.19-1. Existing and Future Uses
Table 4.19-2. Future (2025) Design Hourly Volumes - Zorn Avenue (Existing Site)
Table 6-1. Agency NEPA Coordination and Input to Date for Replacement Louisville VAMC
Table 6-2. Summary of Scoping Comments

List of Figures

Figure 1-1. Existing VA Facilities in 35-County Louisville Service Area
Figure 2-1. Locations of Alternatives Evaluated in Detail
Figure 2-2. Major Components of Atrium Concept for Replacement Louisville VAMC
Figure 2-3. Atrium and Courtyard
Figure 2-4. Proposed Exterior Concept for Front Elevation (East Bar)
Figure 2-5. Locations of Alternatives A, B, and C
Figure 2-6. Proposed Site Plan for Alternative A
Figure 2-7. Site Plan Representative Illustration at St. Joseph Site
Figure 2-8. Existing Louisville VAMC Campus
Figure 3.3-1. Historic Resources in the Vicinity of the Brownsboro Site
Figure 3.3-2. Historic Resources in the Vicinity of the St. Joseph Site
Figure 3.3-3. Historic Resources in the Vicinity of the Existing Robley Rex VAMC on Zorn Avenue
Figure 3.3-4. Historic Resources in the Vicinity of the Existing Robley Rex VAMC on Zorn Avenue
Figure 3.3-5. Historic Resources in the Vicinity of the Existing Robley Rex VAMC on Zorn Avenue
Figure 3.3-6. Historic Resources in the Vicinity of the Existing Robley Rex VAMC on Zorn Avenue
Figure 3.4-1. Earthquakes in Kentucky
Figure 3.4-2. Topography: Brownsboro Site
Figure 3.4-3. Geology: Brownsboro Site
Figure 3.4-4. Soils: Brownsboro Site
Figure 3.4-5. Topography: St. Joseph Site
Figure 3.4-6. Geology: St. Joseph Site
Figure 3.4-7. Soils: St. Joseph Site
Figure 3.4-8. Topography: Zorn Avenue VAMC Campus
Figure 3.4-9. Geology: Zorn Avenue Site
Figure 3.4-10. Soils: Existing Zorn Avenue VAMC Campus
Figure 3.7-1. Common Sounds and Corresponding Sound Levels
Figure 3.7-2. Brownsboro Site Area Noise-Sensitive Receptors
Figure 3.7-3. St. Joseph Site Area Noise-Sensitive Receptors
Figure 3.7-4. Zorn Avenue Site Area Noise-Sensitive Receptors
Figure 3.8-1. Zoning Designations, Brownsboro Site
Figure 3.8-2. Zoning Designations, St. Joseph Site
Figure 3.8-3. Zoning Designations, Zorn Avenue Site
Figure 3.9-1. Location of Flood-Prone Areas in Brownsboro Site Vicinity
Figure 3.9-2. Location of Wetland Areas in Brownsboro Site Vicinity
Figure 3.9-3. Location of Flood-Prone Areas in St. Joseph Site Vicinity
Figure 3.9-4. Location of Wetland Areas in St. Joseph Site Vicinity
Figure 3.9-5. Location of Flood-Prone Areas in Zorn Avenue VAMC Vicinity

xii
ACRONYMS AND ABBREVIATIONS

ADT average daily traffic
APCD Louisville Metro Air Pollution Control District
APE area of potential effect
AST aboveground storage tank
BMP best management practice
BTU British thermal unit
CARES Capital Asset Realignment for Enhanced Services
CBOC community-based outpatient clinic
CEQ Council on Environmental Quality
CERCLA Comprehensive Environmental Response, Compensation and Liability Act
CFR Code of Federal Regulations
dB decibel
dBA A-weighted decibel

EA environmental assessment
EIS environmental impact statement
EMS emergency medical services
EPA U.S. Environmental Protection Agency

FEMA Federal Emergency Management Agency
FIRM flood insurance rate map
FONSI finding of no significant impact
FTEE full-time employee equivalent
FWS U.S. Fish and Wildlife Service
FY fiscal year

GHG greenhouse gas
GPP groundwater protection plan
HAP hazardous air pollutant
hp horsepower

I interstate
IGSHPA International Ground Source Heat Pump Association

JCPS Jefferson County Public Schools
KDEP Kentucky Department for Environmental Protection
kW kilowatt
KYTC Kentucky Transportation Cabinet

L_{dn} day-night sound level
LEED Leadership in Energy and Environmental Design
L_{eq} equivalent continuous sound level
LG&E Louisville Gas & Electric
LiDAR light detection and ranging
L_{max} maximum sound level
L_{min} minimum sound level
LOS level of service
Louisville Metro Louisville-Jefferson County Metro Government
Louisville MSA Louisville-Jefferson County, Kentucky-Indiana Metropolitan Statistical Area
LWC Louisville Water Company

MSA metropolitan statistical area
MSD Louisville and Jefferson County Metropolitan Sewer District

NAAQS National Ambient Air Quality Standard
NEPA National Environmental Policy Act
NHPA National Historic Preservation Act
NOA notice of availability
NPDES National Pollutant Discharge Elimination System
NRCS Natural Resources Conservation Service
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSR</td>
<td>new source review</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetlands Inventory</td>
</tr>
<tr>
<td>PCBs</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>particulate matter less than 2.5 micrometers in diameter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>particulate matter less than 10 micrometers in diameter</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>ROD</td>
<td>record of decision</td>
</tr>
<tr>
<td>SARA</td>
<td>Superfund Amendment and Reauthorization Act</td>
</tr>
<tr>
<td>SHPO</td>
<td>state historic preservation officer</td>
</tr>
<tr>
<td>SPUl</td>
<td>single-point urban interchange</td>
</tr>
<tr>
<td>SSPP</td>
<td>strategic sustainability performance plan</td>
</tr>
<tr>
<td>TARC</td>
<td>Transportation Authority of River City</td>
</tr>
<tr>
<td>t CO${2}$${eq}$</td>
<td>metric tons of carbon dioxide equivalents</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USC</td>
<td>U.S. Code</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>VA</td>
<td>U.S. Department of Veterans Affairs</td>
</tr>
<tr>
<td>VAMC</td>
<td>VA medical center</td>
</tr>
<tr>
<td>VBA</td>
<td>Veterans Benefits Administration</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
EXECUTIVE SUMMARY

As required by the National Environmental Policy Act (NEPA), the U.S. Department of Veterans Affairs (VA) identifies, analyzes, and documents the potential physical, environmental, cultural, and socioeconomic impacts associated with a replacement VA Medical Center (VAMC) in Louisville, Kentucky.

The purpose of VA’s proposal is to construct and operate a 104-bed hospital, diagnostic and treatment facilities, VBA regional office, and required site amenities and improvements on a new campus. This proposed project would replace the existing Robley Rex VAMC, three community-based outpatient clinics, and the existing VBA regional office with new facilities of sufficient capacity to meet the current and projected future healthcare needs of Veterans in the Louisville service area.

The proposed project is needed because the existing Louisville VAMC facilities at 800 Zorn Avenue in Louisville have reached the end of their serviceable lives. The building conditions and site configuration at the existing 63-year old VAMC are inadequate to effectively and efficiently meet the expanding needs of VA’s healthcare mission and VBA services in the region. Within the Louisville service area, 60,943 Veterans were enrolled to receive care in fiscal year 2014, resulting in 762,104 outpatient clinic stops. Enrollment is expected to increase to more than 68,000 by fiscal year 2024. Given the increase in the number of patients as well as the need for improvements to the physical plant, the existing Louisville VAMC facility is insufficient to meet either the current or the increasing future needs of VA’s healthcare mission in the region. Increased capacity is required to, at minimum, keep pace with increased enrollment and clinic stops while maintaining current levels of service and, optimally, improve service levels by accommodating expanded diagnostic services and where possible decreasing wait times for appointments. The increased capacity and services provided by the new VAMC would be expected to streamline and enhance the patient experience for users of the facility.

VA undertook a sequential planning and screening process to identify all reasonable alternatives for the facilities that are necessary to meet the current and projected future healthcare needs of Veterans in the Louisville service area. The alternatives identified in this process ranged from reconfiguring the existing Louisville VA Medical Center (VAMC) at Zorn Avenue, consistent with Veterans’ stated preference, through new construction and renovation, to constructing a replacement VAMC at some new site in the Louisville area. In April 2010, following standard agency procedure for identifying potential new sites, VA’s Real Property Service publicly advertised for expressions of interest from potential offerors of available property that might satisfy its need (including both developed and undeveloped properties). VA received more than 20 responses and a multi-disciplinary board of VA employees used numerous engineering and environmental criteria to screen the initial set of site options. Of the sites offered for VA’s purchase, those referred to as the Brownsboro Site, the St. Joseph Site, and the Fegenbush Site scored the highest based on the screening criteria. VA also identified the Downtown Site (offered by the University of Louisville and the City of Louisville) and the potential to reconfigure the existing Louisville VAMC site as candidate sites for the replacement VAMC.

After a more rigorous second round of screening, including Phase I environmental site assessments, American Land Title Association surveys, geotechnical investigations (except Downtown Site), additional onsite environmental investigations, and agency consultations, VA identified the Brownsboro and St. Joseph sites as the ones that best satisfied VA’s needs to provide timely healthcare to Veterans with the least potential impact on the surrounding environment. They are evaluated in detail in this EIS. The Fegenbush Site, the Downtown Site, and reconfiguration of the existing VAMC were dismissed from further consideration.
VA has identified three alternatives that are analyzed in detail in this EIS:

- **Alternative A:** construction and operation of a replacement VAMC campus at the Brownsboro Site at 4906 Brownsboro Road, Louisville, Kentucky. VA would relocate medical facility operations to the Brownsboro Site from Zorn Avenue. Leases would not be renewed for three community-based outpatient clinics and the existing VBA regional office.

- **Alternative B:** construction and operation of a replacement VAMC campus at the St. Joseph site on a parcel located east of I-265 and south of Factory Lane in Louisville. VA would relocate medical facility operations to the St. Joseph site from Zorn Avenue. Leases would not be renewed for three community-based outpatient clinics and the existing VBA regional office.

- **Alternative C:** No Action – continued operation of the existing Robley Rex VAMC at the Zorn Avenue location.

Under alternatives A and B, a later process would evaluate the future use or disposition of the Zorn Avenue property, regardless of where the replacement facility is located.

Associated with each of the alternatives is VA’s plan to relocate VBA functions at the VBA regional office from its currently leased space at 321 West Main Street, Louisville, to the proposed new VAMC. Also included is VA’s plan to relocate the health care services provided in three of the eight CBOCs in the Louisville service area from leased space to the new VAMC. The three CBOCs are all located in the Metro Louisville area. There are no plans to close or relocate the other five CBOCs within the service area. VA’s proposal to consolidate the VBA and CBOC functions with the proposed new VAMC would provide more effective and efficient services to Veterans.

The proposed campus for both Alternative A and B locations would include:

- Full service (inpatient/outpatient) 104-bed VA hospital with diagnostic and treatment facilities (approximately 900,000 GSF)
- VBA regional office (approximately 130,000 GSF)
- Central utility plant (approximately 44,000 GSF)
- Geothermal system for heating and cooling the VBA regional office building
- Laundry facility (approximately 19,000 GSF)
- Site lighting
- Parking decks for 3,000 vehicles
- Roads, sidewalks, and access (entrance/exit) points
- Stormwater management
- Above-ground potable water storage (water tower)
- Subsurface utility distribution systems
- Landscaping
- Other required site amenities and improvements

The proposed new VAMC would provide the same services (primary care, specialty care and inpatient care) as available at the existing Zorn Avenue facility. However, the new facility would be sized to accommodate a projected higher workload, incorporating additional capacity and restructuring to deliver higher quality care to current and future Veterans, and allowing the VAMC to keep pace with technology and infrastructure needs in the evolving health care services field. Although the proposed bed count for a replacement VAMC is lower than that in the existing Zorn Avenue facility, VA’s projected workload includes a decrease in inpatient demand (i.e., beds) and an increase in outpatient (clinic) demand. This is
consistent with health care trends in both the VA and private sector. The replacement VAMC would accommodate the projected reduction in need for inpatient beds and also provide the necessary clinical space to accommodate the projected increase in outpatient services for a growing Veteran population. The increased out-patient capacity would also accommodate the current (and projected) patient workload at the three CBOCs that would be moved for consolidation within the new VAMC, thereby providing more efficient and effective delivery of outpatient services within the service area.

VA would construct and operate a new replacement medical center and VBA regional office following the Atrium conceptual design. The Atrium concept for the replacement VAMC campus consists of a four-story east bar and a five-story west bar, separated by a central atrium and courtyard.

The potential environmental impacts of the alternatives are summarized in the table included at the end of this Executive Summary; it does not address cumulative impacts which are summarized below. An integral component of the proposed project under both Alternatives A and B is the incorporation of measures to avoid, minimize, or compensate for adverse impacts and best management practices (BMPs). VA would also comply with all applicable federal, state, and local regulations during construction and operation.

Cumulative impacts from the incremental impact of the action alternatives when added to other past, present, or reasonably foreseeable actions in the Louisville service area are expected to be non-existent, negligible or minor for aesthetics, air quality (regional), cultural resources, geology and soils, hydrology and water quality, wildlife and habitat, noise, floodplains and wetlands, socioeconomics, community services, solid waste and hazardous materials, utilities, and environmental justice. Any impacts to these resources would be similar to those from current VA operations or to other new private and commercial developments that may occur within the service area, and would include mitigation measures to minimize impacts. There are potential cumulative effects related to land use (permanent conversion of greenfield space to add to existing development in the area) and traffic. With respect to traffic, the proposed VAMC would contribute to adverse cumulative traffic impacts at the Brownsboro Road and Northfield Drive intersection along with other roadway projects and increased growth. However, based on the percentage of the total turning movements at that intersection to and from the direction of the VAMC campus, the proposed VAMC would not be a significant contributor to the traffic volumes or degradation of the level of service. The estimated construction schedules for the US 42 interchange project and the proposed VAMC campus would overlap for approximately two years, having a temporary adverse cumulative impact on the transportation network from construction traffic. The interchange project is scheduled to be completed before the VAMC campus would be completed; thus, construction traffic conditions would be expected to improve while final construction of the proposed VAMC continues. At the St. Joseph Site, Factory Lane would experience significant increases in delay with only the VAMC and even further delays with the VAMC and proposed new residential development planned for across the street. Under either build scenario (VAMC or VAMC with new residential development), Old Henry Road would see some increase in delay. LaGrange Road would see relatively minor increases in delay given there are already significant delays on LaGrange Road. In addition, residents living immediately adjacent to the VAMC campus could experience potentially adverse health effects from increased vehicular air emissions, particularly those living within 500 feet of the VAMC and also near existing roads and highways that already experience heavy traffic volume.

VA and the Environmental Protection Agency published a Notice of Availability (NOA) of the Draft EIS in the Federal Register concurrently on October 27, 2016, inviting public comments on the content of this document. Publication in the Federal Register officially started a 45-day public comment period running through December 12, 2016. VA hosted two public comment meetings in Louisville in a location convenient to the existing facility on Zorn Avenue and in close proximity to the preferred location at
Brownsboro Road. The public comment period was extended an additional 30 days, from December 12, 2016 to January 11, 2017, in response to public requests.

VA has selected Alternative A as its preferred alternative. Alternative C is the environmentally preferable alternative. After a 30-day review period for the Final EIS, VA will publish a record of decision that states the alternative selected for implementation and identifies associated mitigation commitments.
<table>
<thead>
<tr>
<th>Resource / Issue</th>
<th>A – Replacement VAMC at Brownsboro Site</th>
<th>B – Replacement VAMC at St. Joseph Site</th>
<th>C – No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets purpose of and need for action</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>During early stages of construction, presence of heavy equipment and unfinished stages of site preparation and building construction would temporarily impact visual quality. Over the long term, the VAMC would create a noticeable contrast to the existing landscape, obstruct or detract from what some observers would consider a scenic view, or introduce visual elements that some observers would consider out of scale or character with the surrounding area. The extent of these adverse effects would range from negligible to major, depending on the observer. Visual effects to the residential developments closest to the site (e.g., Crossgate, Graymoor-Devondale) would be considered potentially significant.</td>
<td>Impacts similar to Alternative A. Visual effects to the residential developments closest to the site likely to be considered potentially significant.</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Construction and operation emissions would comply with all permit requirements and regulations. Particulate emissions during construction are below the de minimis threshold level. Overall, air quality impacts would be negligible.</td>
<td>Impacts similar to Alternative A, but impacts on adjacent neighborhoods may be slightly less given the larger buffer area between residences and the proposed VAMC (i.e., more than 500 feet).</td>
<td>No construction impacts at Zorn Avenue site. Operation impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Potential for adverse health effects from increased vehicular traffic air emissions on residents living immediately adjacent (e.g., within 500 feet) to the VAMC, especially in combination with their proximity to existing roads and highways that already experience heavy traffic volumes. They are not expected to be significant, however.</td>
<td>No adverse effects to archaeological features or historic properties. VA's plans for disposition of the potentially NRHP-eligible existing Zorn Avenue VAMC have not been determined and would be the subject of a future reutilization feasibility study, NEPA analysis, and consultation under Section 106 of the National Historic Preservation Act, as appropriate.</td>
<td>No adverse effects to archaeological features or historic properties.</td>
<td></td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No adverse effects to archaeological features or historic properties. One potentially eligible National Register site determined not to be adversely affected due to its location in relation to the project. SHPO also concurred with findings of no effect on other nearby National Register and National Historic Landmark properties due to the physical distance and presence of existing natural barriers separating them from the project.</td>
<td>No effects to archaeological features or historic properties.</td>
<td>No adverse effects to archaeological features or historic properties.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>Construction-related impacts to geology and soils would be minor and short-term. The presence of karst features has been studied through extensive geotechnical investigations which would be factored into project design and would not be associated with an adverse effect. In addition, a geotechnical engineer would be present during site work to observe conditions and determine whether mitigation is needed. Karst risk has been acceptable for previous site development for the adjacent land owners. Need for blasting is not anticipated at Brownsboro but if required, adherence to vibration standards and requirements of the Kentucky Revised Statute 351.330 for blasting operations, advance notification of adjacent city governments and immediately adjacent residents, and pre-blast survey (if determined necessary) would avoid damage to nearby buildings and houses. Contractor compliance with applicable federal and state laws for blasting and safety would be enforced by U.S. Army Corps of Engineers who would oversee construction. Loss of prime farmland soil would not be significant. Erosion and sedimentation impacts would be minimized through</td>
<td>Impacts similar to Alternative A. No known or suspected karst features have been identified from the test borings done at the St. Joseph site and karst potential appears to be regionally lower at St. Joseph than Brownsboro. It is not yet known whether blasting would be required at St. Joseph since less is known about the underlying rock strata, but if conducted, the same precautions during construction would be taken as at Brownsboro.</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>implementing construction best management practices and conforming to permit requirements. No operation-related impacts would occur.</td>
<td>Impacts similar to Alternative A. Protection of stormwater and groundwater resources would be similar to that described for Alternative A and would result in similar impacts. Both sites would have to meet the same requirements, although the larger St. Joseph site could more easily allow the construction of retention areas, etc.</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
<td></td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>Potential construction impacts to surface water quality and groundwater are predicted to be localized and negligible with implementation of the required control and protection plans. Site wide stormwater management would meet predevelopment discharge rates for the 2-, 10-, 25-, and 100-year storm events in accordance with the Metropolitan Sewer District (MSD) Design Manual and should therefore have minimal adverse effects on the hydrology of the project site and adjacent properties, surface water quality, and the rate of groundwater recharge. VA proposes to control storm water runoff through the use of surface and subsurface detention systems that would maintain the post-construction stormwater discharge rate to pre-development conditions. Because the proposed site is located in an area with potential for karst development where groundwater is susceptible to direct contamination from surface activities, VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>would prepare a groundwater protection plan (GPP) in accordance with Kentucky Administrative Regulation (Title 40, Chapter 5:037) before drilling any geothermal bores.</td>
<td></td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td></td>
<td>VA has committed to not adversely impacting the adjacent properties and would improve the drainage along its east property line as required by MSD.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildlife and Habitat</td>
<td>Negligible impact to common wildlife species (displacement of individuals). Nesting bird survey would identify migratory birds to be protected if construction begins between April and July. To avoid impacts to roosting northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any northern long-eared bats from the site. No other listed species or critical habitat onsite. VA completed northern long-eared bat 4(d) rule streamlined consultation and FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016.</td>
<td>Negligible impact to common wildlife species (displacement of individuals). Nesting bird survey would identify migratory birds to be protected if construction begins between April and July. To avoid impacts to roosting Indiana or northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any northern long-eared bats from the site. VA completed northern long-eared bat 4(d) rule streamlined consultation and FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to this project is not</td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Any taking that may occur incidental to this project is not prohibited under the final 4(d) rule (50 CFR §17.40(o))</td>
<td>prohibited under the final 4(d) rule (50 CFR §17.40(o)). Land disturbance for construction would be preceded by a site survey for running buffalo clover and any appropriate mitigation in consultation with the U.S. Fish and Wildlife Service, including a management plan to avoid impact during operations. No other listed species or critical habitat onsite.</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in construction-related impacts similar to Alternatives A and B, while operation-related impacts would depend on the specific type of development.</td>
</tr>
<tr>
<td>Noise</td>
<td>Construction-related noise and vibration impacts would be adverse, short-term, and potentially moderate in magnitude (approaching EPA threshold levels), depending on the receptor type and proximity to the project location. Operation-related noise impacts would be minor. Because Brownsboro is a relatively confined site, surrounding communities may experience adverse noise and vibration impacts potentially moderate in magnitude, although short-term in nature. VA would conduct a community outreach effort to provide early information and schedules on construction activities and expected noise levels and durations. Blasting activities not anticipated to be needed at Brownsboro.</td>
<td>Impacts similar to Alternative A, although slightly less on adjacent residents since St. Joseph is a larger site with a larger buffer area between project and nearest residences. Not yet known whether blasting would be needed but if so, would take same precautions as described for Brownsboro (see also summary of impacts in geology)</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in construction-related impacts similar to Alternatives A and B, while operation-related impacts would depend on the specific type of development.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Land Use</td>
<td>Temporary disturbances to access to adjacent land uses could occur during construction. The conceptual design for building setbacks, perimeter fence, and landscape buffer would be compatible with the existing zoning. The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations in existing zoning, and would therefore be an adverse impact to adjacent land use.</td>
<td>Temporary disturbances to access to adjacent land uses could occur during construction. The conceptual design for building setbacks, perimeter fence, and landscape buffer would be compatible with the existing zoning. The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations of the zoning of the northeastern part of the site, and would therefore be considered an adverse impact to the adjacent residential land use.</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B within existing or similar zoning requirements.</td>
</tr>
<tr>
<td>Floodplains and Wetlands</td>
<td>No impacts</td>
<td>No impacts to floodplains. Small onsite wetland areas would require coordination with U.S. Army Corps of Engineers to ensure no impacts or mitigate impacts.</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>Short-term beneficial effects to local economy during construction and operation. No long-term adverse effects to property values or local crime rates are expected, although property values of immediately adjacent neighborhood (Crossgate) could be adversely affected given the change in visual character, as would the potential impacts from noise, traffic and air quality.</td>
<td>Impacts similar to Alternative A.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Community</td>
<td>Negligible impacts during construction, no</td>
<td>Impacts similar to Alternative A.</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Services</td>
<td>impacts from operation.</td>
<td></td>
<td>location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Solid Waste and Hazardous Materials</td>
<td>Short-term negligible impact due to increased presence and use of petroleum and hazardous substances during construction, minimized through best management practices and regulatory compliance. Negligible adverse long-term impacts during operation as solid waste and hazardous materials would be managed in accordance with VA policies and federal, state, and local regulations. Brownsboro Road would be designated as the primary site entry and exit for waste transport during construction. Given the close proximity of local residents to the proposed site, VA would further assist residents and city officials with proper traffic routing through the use of appropriate temporary signage and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers.</td>
<td>Impacts similar to Alternative A. contractor to assist residents and city officials with proper directing of traffic through the use of appropriate temporary signage, and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers.</td>
<td>No impacts at Zorn Avenue location. Impacts from development of Brownsboro and St. Joseph sites by others would depend on the specific type of development.</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>Construction contractors would provide a plan to manage site use, including limited onsite parking during the initial stages of</td>
<td>The start of construction would create the possible need for the addition of a signalized intersection where one does not</td>
<td>Negligible impacts. Traffic at the existing VAMC at the Zorn Avenue location would increase over time commensurate with</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| construction and offsite parking and storage as construction progresses; the approved plan may also mitigate impacts to local traffic to the extent it decreases the number of construction worker vehicles commuting to the site.
Operation of the proposed campus is anticipated to increase the Average Daily Traffic (ADT) on Old Brownsboro Road, between the ramp split and US 42, by more than 20 percent; ADT is not expected to increase by more than 20 percent on any other segment of roadway in the corridor, however.
Travel times and intersection delays under Alternative A would be comparable for a similar mixed use development that would be anticipated to be built at the Brownsboro Site.
Travel times and intersection delays would be significantly improved by the planned construction of the single-point urban interchange (SPUI). Assuming the SPUI is constructed at the US 42 interchange with I-264, the project would not significantly contribute to the degradation of levels of service at the intersection of US 42 and KY 22 | currently exist (at the proposed VAMC entrance on Factory Lane).
There are overall major travel time impacts under Alternative B compared to future conditions without the VAMC, particularly for VAMC traffic exiting the site and going to the I-265 interchange at LaGrange Road. | projected future background traffic growth on Zorn Avenue. |
<table>
<thead>
<tr>
<th>Resource / Issue</th>
<th>A – Replacement VAMC at Brownsboro Site</th>
<th>B – Replacement VAMC at St. Joseph Site</th>
<th>C – No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Brownsboro Road at Northfield Drive), which operates at a LOS E in the AM peak hour and LOS F in the PM peak hour both with the VAMC or with an alternative mixed-use development. Without the new SPUI interchange construction, the intersection would operate at LOS F in both the AM and PM peak periods with either the VA or alternative mixed-use development.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With interchange improvements at Watterson Expressway (I-264) and US 42, the levels of service would be acceptable (LOS C) at the entrance to and exit from the VAMC campus (KY 22 at I-264 eastbound ramp split).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A qualitative analysis comparing just the total number of cars on the road (Design Hourly Volume) between the proposed VAMC and a no build/development scenario at Brownsboro (but accounting for background growth), show a significant increase in cars during the morning and evening peak from the VAMC in year 2025. The highest increase would be for the segment of Old Brownsboro Road between US 42 and the proposed site because this would be the single access point for the VAMC campus. However, the overall traffic congestion/delays associated with the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>projected number of cars would be expected to be significantly reduced with construction of the new SPUI interchange.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>Sufficient capacity exists and connections can be developed without significant environmental impacts for utility services to be provided to the site, although LG&E would construct a new substation to provide primary electrical service required for the hospital. Construction and operation of a new substation would result in permanent conversion to urban/industrial land. Overall impacts would be expected to be minor although visual effects (including 24-hour lighting) and noise emissions could adversely affect any nearby residences. The new substation would have the added benefit of increasing capacity and reliability to the surrounding areas.</td>
<td>Sufficient capacity exists and connections can be developed without significant environmental impacts for utility services to be provided to the site.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>No disproportionate environmental, health or safety impacts to minority or low income populations within the service area or within a 3-mile radius of the site where project impacts most likely to occur.</td>
<td>No disproportionate environmental, health or safety impacts to minority or low income populations within the service area or within a 3-mile radius of the site where project impacts most likely to occur.</td>
<td>No impacts.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION, INCLUDING PURPOSE AND NEED

The United States (U.S.) Department of Veterans Affairs (VA) announced in May 2011 their determination of a need to replace the existing Robley Rex VA Medical Center (VAMC) in Louisville, Kentucky, to meet the current and future needs of VA’s health care mission in the region. In this environmental impact statement (EIS), VA identifies, analyzes, and documents the potential physical, environmental, cultural, and socioeconomic impacts associated with siting, constructing, and operating a replacement 104-bed hospital, diagnostic and treatment facilities, Veterans Benefits Administration (VBA) regional office, and required site amenities and improvements on a new campus.

This EIS is conducted in accordance with the National Environmental Policy Act of 1969 (NEPA) (42 United States Code [U.S.C.] 4321 et seq.), the Council on Environmental Quality’s (CEQ’s) regulations for implementing the procedural provisions of NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508), VA’s NEPA regulations titled “Environmental Effects of the Department of Veterans Affairs Actions” (38 CFR Part 26), and VA’s “NEPA Interim Guidance for Projects” (VA 2010). NEPA and these regulations require that VA, as a federal agency, must evaluate the potential environmental impacts of the agency’s major actions significantly affecting the quality of the human environment.

The potential environmental impacts of three alternatives are analyzed in this EIS. Alternatives A and B evaluate different locations for a replacement VAMC. Alternative C is the No Action alternative, which is required by NEPA and its regulations and also provides a baseline for comparing potential impacts from the action alternatives.

1.1 Robley Rex Veterans Affairs Medical Center

1.1.1 Veterans in the Louisville Service Area

The Robley Rex VAMC and its eight community-based outpatient clinics (CBOCs) serve approximately 150,060 U.S. Veterans within the Louisville service area (for the Fiscal Year ending September 30, 2014, or FY 2014), which includes 35 counties in western Kentucky and southern Indiana.

Of the approximately 150,0601 U.S. Veterans living within the Louisville service area, 60,943 were enrolled in FY 2014, resulting in 762,104 outpatient clinic stops. The outpatient clinic stops include total visits to the VAMC and all eight CBOCs in the service area. Note that the number of outpatient clinic stops is significantly higher than the number of Veterans enrolled because many Veterans typically visit the Medical Center several times over the course of a given year to receive different services, and in some cases may have multiple clinic stops during a single visit (e.g., including lab work, rehab/physical therapy, mental health services, etc.).

1.1.2 Services and Facilities

VA provides inpatient and outpatient medical services to Veterans at the existing VAMC at 800 Zorn Avenue, in Louisville, Jefferson County, Kentucky, and eight CBOCs in leased space the Louisville area (Figure 1-1).
Figure 1-1. Existing VA Facilities in 35-County Louisville Service Area.
Services provided by VA at the Robley Rex VAMC on Zorn Avenue include the following:

- Primary care
- Emergency care
- Behavioral and mental health
- Women’s healthcare
- Tele-health
- Social work
- Inpatient care
- Surgery
- Specialty care
- Research
- Dental
- Pharmacy
- Optometry
- Substance abuse residential treatment program
- Hospice and palliative care
- Geriatric care
- Extended care
- Home-based primary care
- Substance abuse outpatient treatment program

There existing Medical Center has 123 inpatient beds: 60 medical/surgical beds, 25 intensive care unit/surgical intensive care beds, 22 inpatient mental health beds, and 16 beds for the substance abuse residential treatment program.

The eight CBOCs are located at:

- 4010 Dupont Circle, Louisville
- 3430 Newburg Road, Louisville
- 3934 North Dixie Highway, Louisville
- 1911 US Highway 227, Carrollton, Kentucky
- 619 Elizabethtown Road, Clarkson, Kentucky
- 851 Ireland Loop, Ft. Knox, Kentucky
- 811 Northgate Boulevard, New Albany, Indiana
- 1467 Scott Valley Drive, Scottsburg, Indiana

All eight CBOCs provide primary care. The Dupont Circle, US Highway 227, and Scott Valley Drive locations also offer mental health services; and the North Dixie Highway location houses the VA Women’s Healthcare Center, which provides gender-specific preventive care.

VA provides benefits services to over 380,000 Veterans at the existing Louisville Regional Benefits Office, located in leased space at 321 West Main Street in Louisville. This VBA regional office administers a variety of benefits and services, including compensation; education; insurance; loan guaranty; pension; fiduciary services; vocational rehabilitation and employment for Veterans, service members, their families and survivors in Kentucky; counseling about eligibility for VA benefits and how to apply; information about VA health care and memorial benefits; outreach to Veterans—including those who are homeless or at risk for homelessness—and older, minority, and women Veterans; and public affairs.

1.2 Purpose of and Need for a Replacement Facility

The *purpose* of the proposed project is to provide Louisville area Veterans with facilities of sufficient capability (functional) and capacity to meet their current and projected future health care needs. These facilities would include a full-service (inpatient and outpatient) hospital, associated CBOCs, and a VBA regional office.

The number of Veterans enrolled in health care services within the Louisville service area is expected to increase from 60,943 in FY2014 to more than 68,000 (more than 11 percent) by FY 2024. During this
same time period, outpatient clinic stops are expected to increase from 762,104 to over 963,000 (a 26 percent increase). Increased capacity is required to, at minimum, keep pace with increased enrollment and clinic stops while maintaining current levels of service and, optimally, improve service levels by accommodating expanded diagnostic services and where possible decreasing wait times for appointments. The increased capacity and services provided by the new VAMC would be expected to streamline and enhance the patient experience for users of the facility.

The proposed project is needed because the current hospital and CBOCs are operating at maximum capacity and are unable to accommodate the projected increase in the regional Veteran population. The configuration and condition of the existing 63-year-old Louisville VAMC facility offers limited options to expand to meet these needs and parking at the Zorn Avenue VAMC is insufficient; see Section 2.3.3 for more detail on the challenges of rebuilding at Zorn Avenue. In addition, because VBA functions exceed the physical capacities of its existing regional office location in leased space at 321 West Main Street, Suite 390, Louisville, the existing VBA regional office also requires relocation. These insufficient facilities challenge VA's ability to safely, economically, and consistently provide high-quality, integrated health care and services to the region's Veterans.

Between 1998 and 2004, VA completed a nationwide Capital Asset Realignment for Enhanced Services (CARES) study to identify the demand for VA care and assess appropriate function, size, and location for future VA facilities. The CARES study confirmed that the Louisville VAMC has significant space issues. In addition, VA conducted a feasibility study in 2009 that also considered various reconfiguration options for the existing VAMC. VA subsequently determined that new facilities constructed on a new site would be best suited to meet future needs. The specific factors that contributed to this determination of need and that preclude renovating or making major additions to the existing VAMC include the following:

- Hospital infrastructure does not allow renovations to meet current design criteria:
 - The distance between structural columns limits open space utilization, and floor to floor heights are minimal for today’s standards.
 - The primary electrical distribution system is at capacity and cannot accommodate additional high power requirements.
 - The heating, ventilation, and air conditioning infrastructure does not meet room air exchange criteria in many hospital areas, affecting patient comfort and infection control.
 - There are no dedicated patient transport elevators. The existing elevators cannot accommodate new beds.

- There is no appreciable vacant space on the campus for expansion:
 - The facility is 200,000 square feet short of the space needed for the current workload.
 - Providing services at maximum capacity results in very little available transitional space from the time of service until discharge.
 - There is no space available for expansion of diagnostic services, which affects workload and operational efficiency.

- Parking is limited to 1,200 spaces with no place to expand. The construction phase for an onsite parking garage would preclude use of a substantial portion of the existing parking spaces that would fall within a new parking facility footprint as well as for materials laydown, a situation that the already constricted campus could not feasibly accommodate even for a very short period of time.
The VA also proposes to move the services currently provided at the three CBOCs in the Louisville metro area (i.e., Dupont Circle, Newburg Road, and North Dixie Highway locations) to the new VAMC. All three of these occupy leased space and were originally opened as a stopgap measure because existing capacity was not available within the existing VAMC to deliver these outpatient services. As such, the duplicate services now offered between the CBOCs and the VAMC create inefficiencies in the current health care system. The proposed new VAMC would include sufficient capacity to accommodate the current and projected workloads of these three CBOCs.

Although previous surveys conducted by the VA showed an overwhelming majority of Veterans would prefer to stay at the current Zorn Avenue Site, the VA identified several engineering and environmental challenges associated with remaining at that site in its 2009 feasibility study. In particular, rebuilding or renovating at the current Zorn location would not resolve the issues that are driving the need for a replacement medical center campus including inability to meet current design criteria (examples noted on the previous page) and the lack of available space for expansion. In addition, construction activities would cause a significant adverse impact to ongoing delivery of health care services to Veterans.

VA’s mission is to provide care for Veterans in the most effective and efficient manner possible. Decisions relating to the health care needs of Veterans and the best ways to configure the health care services offered - including the reconfiguration of the VBA and existing CBOCs - fall within VA’s expertise. On this basis, VA determined that consolidation at a new site would be the best way to meet Veterans’ needs and improve service levels.

1.3 Related NEPA Documents and Scope of this EIS

Based on the findings of the CARES Study, VA prepared a programmatic environmental assessment (PEA) that evaluated the environmental effects of selecting and acquiring a site for the construction and operation of a replacement VAMC, and issued a finding of no significant impact (FONSI) on June 15, 2012. The PEA was titled Final Programmatic Environmental Assessment of the Proposed Site Selection, Construction, and Operation of a Replacement Louisville VA Medical Center (VA 2012b Final PEA, VA 2012c PEA FONSI).

The PEA analyzed the effects of transferring operations from the existing VAMC to a replacement VAMC at either of two alternative sites—the Brownsboro Site (identified as the preferred site) or the St. Joseph Site—and the No Action alternative of continuing operations at the existing Zorn Avenue location. The FONSI stated that VA had determined there would be no significant environmental impacts associated with either location provided that VA (1) implemented the mitigation, avoidance, and minimization measures identified in the final PEA; and (2) completed a subsequent site-specific EA, tiered from the PEA\(^1\) to analyze the potential environmental effects of the construction and operation of the VAMC on the selected site. The site-specific EA would more fully develop and analyze the identified mitigation, avoidance, and minimization measures. Following the completion of PEA and the NEPA process for the decision to transfer operations to a replacement VAMC, the VA purchased the Brownsboro property on July 10, 2012.

The master plan and concept phase began immediately thereafter to develop the project features and details to be evaluated in the subsequent site-specific EA for construction and operation of the proposed replacement VAMC. The master plan and initial conceptual design for the proposed replacement VAMC were completed in April 2013, with a revised conceptual design prepared in June 2013. VA subsequently

\(^1\) Tiering from a programmatic NEPA document to a site-specific document is an appropriate NEPA practice when the sequence of analyses is from a NEPA document on a specific action at an early stage (such as need and site selection) to a subsequent NEPA document at a later stage (such as environmental mitigation). See 40 CFR § 1508.28.
reevaluated and revised the conceptual design and selected the Atrium concept, completed in March 2014, for development into schematic designs.

With the conceptual design complete, the VA began preparation of the tiered Site-specific (SEA) for the construction and operation of the replacement VAMC at the Brownsboro Site in 2014, in keeping with its 2012 decision on the basis of the PEA. In December 2014, VA published for public comment the draft tiered SEA evaluating the proposed action to construct and operate a replacement Robley Rex VAMC campus, including a regional VBA office, using the Atrium concept at 4906 Brownsboro Road in Louisville, Jefferson County, Kentucky (VA 2014 Draft SEA). The No Action alternative in the SEA was to continue operations at the existing Zorn Avenue location. However, based on the findings in the Draft SEA and upon further review, VA concluded that an EIS was the appropriate level of NEPA documentation for evaluating the potential for adverse impacts from constructing and operating a replacement campus at the Brownsboro Site.

By the time of the decision to prepare a site-specific EIS tiered from the PEA, the VA had already purchased the Brownsboro Site. Despite the stated preference for the Brownsboro Site, which had been made clear since the PEA in 2012, the VA fully re-analyzed both the Brownsboro and St. Joseph Sites, as well as the No Action Alternative, in the EIS.

While the Brownsboro Site was purchased prior to the completion of the EIS now in progress, it was purchased after completion of the NEPA process for a VAMC replacement determination. The VA’s current ownership of the Brownsboro Site does not imply a bias in favor of that site. The Brownsboro Site has not been improved or developed by VA and could be used by VA for another purpose or sold should VA choose another site for the proposed VAMC.

This EIS evaluates the entire scope of VA’s proposed action to replace the existing Robley Rex VAMC, including impacts associated with the proposed and alternative location(s), campus and facility construction, and VAMC and VBA operation; and identifies mitigation measures to address environmental impacts. This EIS incorporates relevant information from the previous EAs and further expands upon and refines this information based on the project development and evaluation that has subsequently followed. Where the conclusions of the previous EAs and this EIS differ, the conclusions in this EIS are VA’s current considerations for decision-making, as they are based on the most recent and best available data and analysis.

Based on its expertise in determining how best to meet its mission of providing quality health care to Veterans in an effective and efficient manner, VA has determined the type and level of health care services needed. This determination was made by Veterans Health Administration’s (VHA’s) leaders, planners, and health care practitioners based on their expertise and experience in monitoring each VA facility’s medical services and associated support processes. Such health care decisions are not subject to NEPA review.

Thus, the scope of the EIS is to evaluate potential impacts from the proposed physical facilities from which health care services are offered within the VA Louisville service area, and not on the health care services (e.g., relocation of three CBOCs) themselves. As a result, the focus of this EIS and the NEPA process is to focus on decisions regarding appropriate facilities and infrastructure required to provide the necessary health care services. For example, the number of patients receiving primary care determines the size of waiting rooms, number of exam rooms, size of the parking lot, and number of physician offices. Specialty services such as laboratories or operating rooms require spaces specifically designed for those purposes. While decisions on health care services offered are not subject to NEPA, the scope of the NEPA decision does include changes to the facilities whose design is driven by VA’s projections for services.
1.4 Relevant Federal Statutes, Regulations, and Executive Orders

National Environmental Policy Act
NEPA requires federal agencies to consider the potential impacts of projects, policies, programs, funding decisions and other agency actions on the environment. NEPA integrates environmental planning requirements into agency decision-making.

Council on Environmental Quality (CEQ) Regulations for Implementing NEPA
CEQ, within the Executive Office of the President, coordinates federal environmental policy by working closely with agencies and other executive offices. The Chair of CEQ acts as the top environmental policy advisor to the President. Congress established CEQ through NEPA to ensure federal agencies meet their obligations under the Act. CEQ developed regulations for implementing NEPA (40 CFR Parts 1500 - 1508) and publishes guidance documents to assist agencies with NEPA compliance.

Clean Air Act
The Clean Air Act is intended to “protect and enhance the quality of the Nation’s air resources so as to promote the public health and welfare and the productive capacity of its population.” Section 109 directs the Environmental Protection Agency (EPA) to set national ambient air quality standards (NAAQS) for criteria pollutants. EPA has identified and set NAAQS for the following criteria pollutants: particulate matter, sulfur dioxide, carbon monoxide, ozone, nitrogen dioxide, and lead (40 CFR Part 50). Section 111 of the Act requires establishment of national standards of performance for new or modified stationary sources of atmospheric pollutants. Section 160 requires that specific emission increases be evaluated prior to permit approval to prevent significant deterioration of air quality. Section 112 requires specific standards for releases of hazardous air pollutants. Section 118 requires that each federal agency with jurisdiction over any property or facility engaged in any activity that might result in the discharge of air pollutants comply with “all federal, state, interstate, and local requirements” regarding the control and abatement of air pollution.

Clean Water Act
The Clean Water Act, which amended the Federal Water Pollution Control Act, was enacted to “restore and maintain the chemical, physical, and biological integrity of the Nation’s water.” The Clean Water Act prohibits the “discharge of toxic pollutants in toxic amounts” to navigable waters of the United States. Section 313 of the Clean Water Act requires all branches of the federal government engaged in any activity—including sanitary system wastewater effluents, storm water runoff, and surface water discharges that might result in a discharge or runoff of pollutants to surface waters—to comply with federal, state, interstate, and local requirements. Section 404 of the Clean Water Act gives the U.S. Army Corps of Engineers permitting authority over activities that discharge dredge or fill materials into waters of the United States, including wetlands.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)
CERCLA provides, among other things: (1) a program for emergency response to and reporting of a release or threat of a release of a hazardous substance to the environment; and (2) a statutory framework for remediation of hazardous substance releases from private, state, and federal sites. Using the Hazard Ranking System, contaminated sites are ranked and may be included on the National Priorities List. Section 120 of CERCLA specifies requirements for investigation, remediation, and natural resource restoration, as necessary, at federal facilities, and also provides requirements for hazardous substance contamination on properties to be transferred. CERCLA, commonly referred to as “Superfund,” also provides cleanup funds and assessment requirements for inactive waste sites. Amendments to CERCLA under the Superfund Amendments and Reauthorization Act (SARA) require reporting in the event of a reportable quantity release.
Emergency Planning and Community Right to Know Act (EPCRA)
Title III of SARA, also known as EPCRA, establishes emergency planning requirements for federal, state, and local governments and industry. EPCRA ensures that communities are informed of potential hazards including the type and location of large quantities of toxic chemicals used and stored by facilities in or near the community. EPCRA specifically mandates that chemical information be made available to local emergency response organizations, such as fire departments and hospitals. Any inadvertent release must be reported to appropriate state and local authorities. All subsequent reports must be made accessible to the public.

Endangered Species Act
This Act is intended to prevent the further decline of endangered and threatened species and to restore these species and their habitats. Section 7 of the Act requires federal agencies that have reason to believe that a prospective action may affect an endangered or threatened species or its habitat to consult with the U.S. Fish and Wildlife Service or the National Marine Fisheries Service to ensure the action does not jeopardize the species or destroy its habitat. If, despite reasonable and prudent measures to avoid or minimize such impacts, the species or its habitat would be jeopardized by the action, a review process is specified to determine whether the action may proceed as an incidental taking (50 CFR Part 17).

Farmland Protection Policy Act (FPPA)
The FPPA is contained in subtitle I of Title XV of the Agriculture and Food Act of 1981. The FPPA is intended to minimize the impact of federal programs on the unnecessary and irreversible conversion of farmland to nonagricultural uses. It assures that to the extent possible federal programs are administered to be compatible with state, local units of government, and private programs and policies to protect farmland. For the purpose of FPPA, farmland includes prime farmland, unique farmland, and land of statewide or local importance. Farmland subject to FPPA requirements does not have to be currently used for cropland. It can be forest land, pastureland, cropland, or other land, but not water or urban built-up land. An agency coordinates with the Natural Resources Conservation Service to establish a farmland conversion impact rating score for proposed federal projects. This score is used as an indicator for the project sponsor to consider alternative sites if the potential adverse impacts on the farmland exceed the recommended allowable level.

Migratory Bird Treaty Act
The Act prevents the taking, possession, killing, transportation, or importation of migratory birds, their eggs, parts, or nests. It is intended to protect birds that follow common migration patterns across the United States, Canada, Mexico, Japan, and Russia. It regulates the harvest of migratory birds by specifying conditions such as mode of harvest, hunting seasons, and bag limits.

National Historic Preservation Act
The National Historic Preservation Act declared that it is the policy of the federal government to, among other goals, “Administer federally owned, administered, or controlled prehistoric and historic resources in a spirit of stewardship for the inspiration and benefit of present and future generations.” The most relevant provisions of the Act for this EIS are Sections 106 and 110.

Section 106 requires all federal agencies to review the effects of actions permitted or funded directly or indirectly by the federal government (“an undertaking”) on any district, site, building, structure, or object that is included in or eligible for inclusion in the National Register of Historic Places, and to take those effects into account as part of the assessment of the project. While such undertakings are often necessary to fulfill the mission of an agency, this section ensures that the agency considers cultural resources in the planning of such projects, and seeks to avoid, minimize, or mitigate adverse effects to the cultural
resources in its decisions and agreements. The implementing regulations for the Section 106 process are provided at 36 CFR Part 800: Protection of Historic Properties.

Section 110 ensures that historic preservation is fully integrated into the ongoing programs of all federal agencies. Among its requirements are for each agency to establish a preservation program to identify, evaluate, nominate to the National Register, and protect historic properties; consult with other federal, state, and local agencies, tribes, and other parties on its historic preservation planning activities; and minimize harm from its undertakings to National Historic Landmarks. Section 110 states that “Prior to acquiring, constructing, or leasing buildings for purposes of carrying out agency responsibilities, each federal agency shall use, to the maximum extent feasible, historic properties available to the agency in accordance with Executive Order No. 13006.” This executive order is titled *Locating Federal Facilities on Historic Properties in our Nation’s Central Cities*, and states “the Federal Government shall utilize and maintain, wherever operationally appropriate and economically prudent, historic properties and districts, especially those located in our central business areas.”

Safe Drinking Water Act
The primary objective of the Safe Drinking Water Act is to protect the quality of public drinking water supplies and sources. The Act authorizes EPA to set national standards for drinking water sources, treatment systems, and water distribution. Other programs established by the Act include the Sole Source Aquifer Program, the Wellhead Protection Program, and the Underground Injection Control Program. In addition, the Act protects underground sources of drinking water from contaminated releases and spills.

Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA) and the Hazardous and Solid Waste Amendments
The Solid Waste Disposal Act governs the transportation, treatment, storage, and disposal of hazardous waste and nonhazardous waste (that is, municipal solid waste). Under RCRA, EPA defines and identifies hazardous waste; establishes standards for its transportation, treatment, storage, and disposal; and requires permits for persons engaged in certain hazardous waste activities (40 CFR Parts 260 through 283). Regulations imposed on a generator or on a treatment, storage, or disposal facility vary according to the type and quantity of hazardous waste generated, treated, stored, or disposed of and the methods of treatment, storage, and disposal.

Executive Order 11988 – Floodplain Management
Federal agencies are required to avoid actions that adversely impact floodplains where there are practicable alternatives and to minimize environmental harm. Each federal agency must evaluate the potential effects of an action in a floodplain and ensure planning programs and budget requests consider flood hazards and floodplain management.

Executive Order 11990 – Protection of Wetlands
Each federal agency must take action to minimize the destruction, loss, or degradation of wetlands and preserve and enhance the values of wetlands in carrying out agency responsibilities. An agency must follow this order when acquiring, managing, and disposing of federal lands and facilities; financing, constructing, or assisting in construction and improvements; and conducting federal activities and programs affecting land use. The order does not apply to permits, licenses, or other activities involving wetlands on non-federal property. Each agency must allow the public to review plans or proposals for new construction in wetlands early in the planning process.

Executive Order 12898 – Environmental Justice
Executive Order 12898 directs each federal agency to make environmental justice part of its mission. A federal agency will identify and address the human health or environmental effects of its actions on minority and low-income populations.
Executive Order 13175 – Consultation and Coordination with Indian Tribal Governments
This order supplements the Executive Memorandum (dated April 29, 1994) entitled, “Government-to-Government Relations with Tribal Governments,” and states that each executive branch department and agency shall consult with tribal governments on, and assess the impacts of, federal plans, projects, programs, and activities that may affect tribal resources.

Executive Order 13423 – Strengthening Federal Environmental, Energy, and Transportation Management
This order instructs federal agencies to conduct their environmental, transportation, and energy-related activities in support of their respective missions in an environmentally, economically and fiscally sound, integrated, continuously improving, efficient, and sustainable manner.

Executive Order 13693 – Planning for Federal Sustainability in the Next Decade
This 2015 order sets policy and goals for federal agencies to maintain federal leadership in sustainability and greenhouse gas emission reductions. Through a combination of more efficient federal operations as detailed in the order, agencies are directed to reduce direct greenhouse gas emissions by at least 40 percent over the next decade while at the same time fostering innovation, reducing spending, and strengthening the communities in which federal facilities operate. The order also includes specific sustainability goals related to building energy conservation, efficiency, and management; using renewable and alternative sources for electrical energy, with specific goals for clean energy use by year; improving water use efficiency and management, including stormwater management; improving fleet and vehicle efficiency and management; use of recycled and sustainably produced materials; advancing waste prevention and pollution prevention; and promoting electronics stewardship.

Appendix A lists environmental permits potentially required to implement the project proposal.

1.5 Organization of this Environmental Impact Statement
This EIS is organized in the format recommended by CEQ (40 CFR 1502.10) and includes:

- Cover Sheet, Executive Summary, Table of Contents, and Acronyms and Abbreviations.
- **Chapter 1: Introduction, including Purpose and Need** presents background information and the purpose and need for proposing to construct and operate a replacement Robley Rex VAMC.
- **Chapter 2: Alternatives** describes each of the alternatives evaluated, including taking no action, and summarizes alternatives that were considered but not evaluated in detail.
- **Chapter 3: Affected Environment** describes the natural and human environment within the area that could be affected by the proposal.
- **Chapter 4: Environmental Consequences** is the assessment of the potential environmental impacts of the alternatives.
- **Chapter 5: Mitigation** discusses the measures identified to minimize, avoid, or otherwise mitigate the adverse impacts identified in Chapter 4.
- **Chapter 6: Public Involvement and Agency Coordination** summarizes the process to involve the public and the input received during scoping and, in the Final EIS, comments received on the Draft EIS. This chapter also summarizes coordination with federal, state, and local agencies.
• **Chapter 7: List of Preparers** provides the names, education, and experience of the individuals involved in the preparation of the EIS.

• **Chapter 8: References** lists the references cited in the EIS.

• **Chapter 9: Glossary** provides definitions of the technical terminology used in the EIS.

• **Appendices:**
 A. Permits
 B. Traffic Study
 C. Summary of Public Scoping
 D. Agency and Tribal Correspondence
 E. Draft EIS Comments and Responses
2.0 ALTERNATIVES

The National Environmental Policy Act (NEPA) and the Council on Environmental Quality’s and Department of Veterans Affairs (VA’s) NEPA regulations require rigorous exploration and objective evaluation of all reasonable alternatives for implementing a proposal. This environmental impact statement (EIS) evaluates the potential environmental consequences of three alternatives including No Action. This chapter describes the development of the alternatives, the details of the alternatives, and other alternatives identified but eliminated from detailed analysis.

2.1 Development of Alternatives

VA undertook a sequential planning and screening process to identify all reasonable alternatives for the facilities that are necessary to meet the current and projected future health care needs of Veterans in the Louisville service area. The alternatives identified in this process ranged from reconfiguring the existing Louisville VA Medical Center (VAMC) at Zorn Avenue, consistent with Veterans’ stated preference, through new construction and renovation, to constructing a replacement VAMC at some new site in the Louisville area. This included evaluation of a potential downtown location closer to the University of Louisville Medical Center, which serves as a critical backup to the VAMC providing emergency and specialty care to Veterans. In 2009, VA completed a feasibility study (VA 2009) that evaluated each alternative site with respect to:

- a needs analysis
- location and ownership considerations
- site capacity and capability; site access and circulation
- environmental and natural resource considerations
- sustainability potential
- operation, service and care considerations
- project planning and construction and
- project cost.

The study also considered the following major criteria:

- construction cost and total time to occupancy
- access (during construction and ultimate access)
- land acquisition risk
- Veteran preferences and
- existing site beneficial reuse.

The study concluded that each site alternative was feasible and that each presented specific challenges and advantages. In particular, VA concluded that a full replacement hospital on a greenfield (previously undeveloped) site would likely be least expensive, fastest to delivery, and with the least adverse impact on ongoing Veteran access to care and services. The 2009 study did not identify any specific new site, but
rather evaluated a generic new site’s (downtown and greenfield) feasibility compared to reconfiguring the existing Zorn Avenue facility.

2.1.1 Site Selection Process

In April 2010, following standard agency procedure for identifying potential new sites\(^1\), VA’s Real Property Service publicly advertised (VA 2010) for expressions of interest from potential offerors of available property (including both developed and undeveloped properties) that might satisfy its need. VA received more than 20 responses and a multi-disciplinary board of VA employees used the following criteria to screen the initial set of site options:

- **Location**: VA established a geographic area that would be accessible to most of the Veterans to be served by the facility, and specified that the site needs to be within an approximate 15-mile radius of the University of Louisville Healthcare Center in downtown Louisville to facilitate continued collaboration between that facility and the VAMC.

- **Size**: The site needs to be able to provide dedicated space for a full-service hospital, approximately 2,700 parking spaces, and other amenities. Based on VA’s requirements, the site needs to have at least 25 acres of developable land.

- **Access**: The site needs to have ready access from a primary road and not be located on a congested or narrow secondary road that would make access difficult. Equally, the site must be easily accessible by handicapped Veterans. The site must also meet VA’s security and setback requirements.

- **Utilities**: For cost savings purposes, the site needs to have all utilities readily available, including water, sanitary sewer, natural gas, electric, telecommunications, and fiber optics.

- **Cost**: The site needs to be able to be developed to suit VA's needs in a cost effective manner.

- **Availability**: The site should be available to allow for the design and construction of the replacement facility within a reasonable period of time.

- **Environmental**: The site must be relatively free from environmental concerns, such as hazardous waste contamination, asbestos, lead-based paint, wetlands, floodplain or flooding issues, geotechnical, sensitive cultural or ecological resource concerns, or other regulated environmental resources.

Of the sites offered for VA’s purchase, i.e., those submitted in response to the advertisement based on the screening criteria, those referred to as the Brownsboro Site, the St. Joseph Site, and the Fegenbush Site scored the highest. VA also identified the Downtown Site (offered by the University of Louisville and the City of Louisville) and the potential reconfiguration of the existing Louisville VAMC site as candidate sites for the replacement VAMC.

In 2011, VA subjected each of these initial five candidate sites to a more rigorous second round of screening, including Phase I environmental site assessments, American Land Title Association surveys, geotechnical investigations (except Downtown Site), and additional onsite environmental investigations. In addition, VA contacted federal, state, and local regulatory agencies concerning the potential to develop

\(^1\) VA uses a robust model to project workload demands, including patient demographics and geography. This workload projection was one of several factors used to help identify possible sites for VA facilities.
a replacement VAMC at each of these five sites. Table 2-1 provides a comparative summary of the five sites’ characteristics based on this second round of screening.

Table 2-1. Summary of Site Characteristics of Initial Alternatives.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Brownsboro</th>
<th>St. Joseph</th>
<th>Fegenbush</th>
<th>Downtown</th>
<th>Existing VAMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (acres)</td>
<td>36</td>
<td>99</td>
<td>51</td>
<td>29</td>
<td>48 (22 developable)</td>
</tr>
<tr>
<td>Zoning</td>
<td>Planned development. Likely compatible with VAMC.</td>
<td>Residential and commercial. Likely compatible with VAMC.</td>
<td>Residential and commercial. Likely compatible with VAMC.</td>
<td>Commercial, manufacturing, office/residential. Likely compatible with VAMC.</td>
<td>Residential. Likely compatible with VAMC.</td>
</tr>
<tr>
<td>Current buildings</td>
<td>None</td>
<td>Remnants of farmstead buildings</td>
<td>Remnants of farm buildings</td>
<td>Approximately 20: mostly commercial, church, and a residence</td>
<td>Nine-story VA hospital and support buildings</td>
</tr>
<tr>
<td>Surrounding land uses</td>
<td>Suburban area. Commercial north; residential neighborhoods east and south; I-264 west.</td>
<td>Suburban area. Undeveloped land and scattered residences north; pasture, church, and school east; unimproved land, residential neighborhood, Jewish Hospital Medical Center south; I-265 and residences west.</td>
<td>Suburban area. School, golf course, farmland north; undeveloped land and scattered residences east and south; GE Appliance Park west.</td>
<td>Urban area. University of Louisville Hospital north and west; residential neighborhoods and commercial properties east and south; battered women’s shelter east.</td>
<td>Suburban area. Undeveloped land and I-71 north; residential neighborhoods east, south and west.</td>
</tr>
<tr>
<td>Topography</td>
<td>Level.</td>
<td>Central and southern portions mostly level, northern portion slopes to north.</td>
<td>Mostly level, moderate slope to south in southern portion.</td>
<td>Level.</td>
<td>Central and western portions level; southern, eastern, and northeastern portions steeply sloping.</td>
</tr>
<tr>
<td>National Register of Historic Places (NRHP) historic resources</td>
<td>No NRHP historic districts or eligible structures onsite or immediately adjacent.</td>
<td>No NRHP historic districts or eligible structures onsite or immediately adjacent.</td>
<td>No NRHP historic districts or eligible structures onsite or immediately adjacent.</td>
<td>Phoenix Hill National Register District, eight site structures contribute to district or individually eligible; Green Street Baptist Church, a Louisville landmark and NRHP-listed structure, onsite.</td>
<td>Existing hospital NRHP eligible, in viewshed of Louisville Water Pump Station 31 (historic landmark).</td>
</tr>
</tbody>
</table>
Table 2-1. Summary of Site Characteristics of Initial Alternatives.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Brownsboro</th>
<th>St. Joseph</th>
<th>Fegenbush</th>
<th>Downtown</th>
<th>Existing VAMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological resources</td>
<td>None known.</td>
<td>None known.</td>
<td>Two sites identified, not assessed.</td>
<td>None known.</td>
<td>None known.</td>
</tr>
<tr>
<td>Karst conditions</td>
<td>High karst potential area.</td>
<td>High karst potential area.</td>
<td>High karst potential area.</td>
<td>Not in a high karst potential area.</td>
<td>Known karst area, sinkholes onsite.</td>
</tr>
<tr>
<td>Depth (feet) to bedrock</td>
<td>7 to 19</td>
<td>7 to 15</td>
<td>4 to 11</td>
<td>40 or more</td>
<td>20 or more in developed area</td>
</tr>
<tr>
<td>Surface water</td>
<td>None onsite or near site.</td>
<td>Stream crosses northern portion of site.</td>
<td>Intermittent stream near east site boundary, leads to Fern Creek (500 feet east).</td>
<td>None onsite or near site.</td>
<td>Stream (VA ditch) crosses eastern portion of site, outside of development area.</td>
</tr>
<tr>
<td>Wetlands</td>
<td>No potential wetlands onsite.</td>
<td>One small pond identified on National Wetlands Inventory near stream; two small wetlands in eastern and southern portions of the site.</td>
<td>City identified potential wetland in western portion of site; not on National Wetlands Inventory.</td>
<td>No potential wetlands onsite.</td>
<td>No potential wetlands onsite.</td>
</tr>
<tr>
<td>Floodplains</td>
<td>Not located in 100- or 500-year floodplain.</td>
<td>Not located in 100- or 500-year floodplain.</td>
<td>Not located in 100- or 500-year floodplain.</td>
<td>Southeastern portion of site is in 100-year floodplain.</td>
<td>Eastern portion of site, outside development area, is in 100-year floodplain.</td>
</tr>
<tr>
<td>Threatened and endangered species</td>
<td>In range of known Indiana bat maternity colony. Site does not contain suitable roost trees; development would not likely affect bats.</td>
<td>Within potential Indiana bat habitat range. Site habitat may support running buffalo clover and Kentucky glade cress.</td>
<td>Within potential Indiana bat habitat range. Site habitat may support running buffalo clover and Kentucky glade cress.</td>
<td>None identified.</td>
<td>Within potential Indiana bat habitat range. Site habitat may support running buffalo clover and Kentucky glade cress.</td>
</tr>
<tr>
<td>Hazardous building materials</td>
<td>None.</td>
<td>None.</td>
<td>None.</td>
<td>Likely considerable asbestos and lead-based paint in buildings.</td>
<td>Asbestos known and lead-based paint possible in buildings.</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Brownsboro</td>
<td>St. Joseph</td>
<td>Fegenbush</td>
<td>Downtown</td>
<td>Existing VAMC</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Soil and groundwater contamination</td>
<td>None known or likely.</td>
<td>None known or likely.</td>
<td>None known or likely.</td>
<td>Includes several current and historic operations of concern (gas stations, auto repair shops, dry cleaners, industrial operations. Known lead-impacted soil in northern portion. Current and historic above-ground and underground storage tanks.</td>
<td>A 2,000-gallon heating oil underground storage tank was removed in 1986 with no sampling.</td>
</tr>
<tr>
<td>Traffic</td>
<td>The KY 22/I-264 interchange is congested, even after recent improvements. (At time of screening, it was concluded that transportation infrastructure may be adequate for VAMC with minimal improvements in addition to those that have now been completed.)</td>
<td>Transportation infrastructure around site unlikely to be adequate. Improvements to roads and intersection may be necessary.</td>
<td>Transportation infrastructure is likely adequate with improvements to the site entry and exit points.</td>
<td>Transportation infrastructure is likely adequate with improvements to the site entry and exit points.</td>
<td>Transportation infrastructure is likely adequate with improvements to the site entry and exit points.</td>
</tr>
<tr>
<td>Utilities</td>
<td>Primary electrical feed has capacity for VAMC and could be upgraded easily with new transformer. Backup feed would require a new substation.</td>
<td>Primary electrical feed would be available for the proposed VAMC. Backup feed would require a second transformer not yet installed.</td>
<td>Primary electrical feed to the proposed VAMC would require a new substation.</td>
<td>Services already available and likely adequate with minor upgrades.</td>
<td>Services already available and likely adequate with minor upgrades.</td>
</tr>
<tr>
<td>Property under control for acquisition</td>
<td>At time of screening, yes. Has since been acquired by VA.</td>
<td>At time of screening, yes.</td>
<td>At time of screening, yes.</td>
<td>At time of screening, partially. Site assemblage consists of 80 parcels and 20 property owners. Green Street Baptist Church had indicated desire to remain at current location.</td>
<td>Owned by VA.</td>
</tr>
</tbody>
</table>
As a result of this process, VA determined that the sites that best satisfied VA’s needs to provide timely health care to Veterans with the least potential impact on the surrounding environment were the Brownsboro Site (located at 4906 Brownsboro Road) and the St. Joseph Site (located at 13508, 13605, and 13615 Factory Lane) (Figure 2-1). VA identified the Brownsboro Site as the preferred site (Alternative A) and the St. Joseph Site as the secondary site (Alternative B). Continuing operations from the existing location at 800 Zorn Avenue is evaluated in this EIS as Alternative C, No Action. The Fegenbush Site, the Downtown Site, and reconfiguration of the existing VAMC were not evaluated in detail, as discussed in Section 2.3.

As described above, VA conducted a feasibility study in 2009 and has considered Veteran preference and Veteran population distribution and access concerns in the development of alternatives. Specifically, VA conducted detailed studies on a wide range of options before identifying the two action alternatives A and B as the range of reasonable alternatives to evaluate in the previous PEA and in this EIS; the previous SEA only examined the Brownsboro Site location and No Action alternative. Challenges associated with redevelopment at the Zorn site, a downtown location, and the other greenfield site (Fegenbush) are described in more detail in Section 2.3.

VA recognized from the beginning the importance of including a limited radius criterion that would ensure a location that maintained a viable relationship with the University of Louisville sharing partner, while also providing a location central for the entire Veteran population served; the Louisville service area extends beyond the Louisville metro area to include a 35-county service area within Kentucky and Indiana. VA believes that the 15-mile radius it imposed as part of the site selection process accurately addressed these requirements.

VA acknowledges that it began its site selection process several years ago and that additional sites may have become available since the beginning of the process in 2010. However, reopening the site selection process at this time to identify additional properties that meet VA’s sitting criteria would require many months or even years to investigate, evaluate, and perform additional environmental analysis on any new sites. Once that reopened process was completed, it too could be criticized because still more sites may become available during the time additional sites were being identified and evaluated. A continuous effort to try to find a site acceptable to all stakeholders would not serve VA’s goal of improving Veteran services in the Louisville area.

2.1.2 Conceptual Design

As site acquisition details for the preferred Brownsboro Site were being finalized in 2012, VA determined that it would be advantageous to co-locate functions of the Veterans Benefits Administration (VBA) regional office on the proposed new campus. In addition to improving VBA efficiency through new facilities, co-locating VBA services with the VAMC would centralize Veterans services in a single location. VA has incorporated a VBA regional office building into the final design concept evaluated in this EIS.
Figure 2-1. Locations of Alternatives Evaluated in Detail.
The master planning process for the proposed replacement VAMC campus was completed in April 2013 (Oculus 2013). The master plan’s goal was to propose a layout for campus facilities and structures to ensure optimal function and site use of the Brownsboro Site. This layout was furthered developed through the conceptual design process, which had two primary objectives:

- To develop viable conceptual design options, one of which would be selected by the VA team to proceed through the schematic design phase
- To facilitate an objective evaluation of those designs through development and use of a tool that identifies key scoring and selection criteria, prioritized by the VA team during the concept phase

An evaluation criteria matrix was applied to evaluate possible design concepts. Specific criteria within the following categories were analyzed for each concept:

- Optimize Patient Experience and Satisfaction
- Optimize Staff Experience and Satisfaction
- Departmental Adjacencies
- Neighborhood Experience
- Overall Building Footprint and Siting
- Building Form
- Engineering
- Economics

The Atrium Concept, described in Section 2.2.1, was selected by VA for development into schematics and is proposed for eventual design, construction, and operation in the action alternatives in this EIS. Three other conceptual designs for the proposed replacement VAMC were identified, but are not evaluated in detail in this EIS, as discussed in Section 2.3.4.
2.2 Description of the Alternatives

The alternatives evaluated in this EIS are two action alternatives: Alternative A, construct a replacement VAMC at the Brownsboro Site, and Alternative B, construct a replacement VAMC at the St. Joseph Site; and Alternative C, continue operating from the existing VAMC on Zorn Avenue (No Action). Alternative C also serves as the baseline for identifying the impacts from the action alternatives (A and B). The following is a description of the components of the proposal common to both action alternatives.

2.2.1 Components Common to Both Action Alternatives

Associated with each of the alternatives is VA’s plan to relocate VBA functions at the VBA regional office from its currently leased space at 321 West Main Street, Louisville, to the proposed new VAMC. Also included is VA’s plan to relocate the health care services provided in three of the eight CBOCs in the Louisville service area from leased space to the new VAMC. The three CBOCs that would be affected are located at:

- 4010 Dupont Circle, Louisville
- 3430 Newburg Road, Louisville
- 3934 North Dixie Highway, Louisville

There are no plans to close or relocate the other five CBOCs within the service area.

VA has determined that co-location of the VAMC and VBA assets would improve Veteran access to health care and benefits by allowing both to be accessed from the same location. The three Louisville clinics proposed for relocation are located closest to the VAMC and are easily within VA’s access guidelines for primary care (i.e., 30 minute drive time). In addition and as noted previously, they were originally opened as stopgaps because the capacity was not available within the existing VAMC to deliver these out-patient services at the time. The proposed new VAMC is designed with sufficient capacity to accommodate the projected workload for the VAMC and the three CBOCs, thus allowing services to be more effectively and efficiently delivered. Relocating the CBOCs eliminates the costs associated with leasing the CBOC facilities while increasing VA’s efficiency in providing primary care services. VA’s proposal to consolidate the VBA and CBOC functions with the proposed new VAMC would provide more effective and efficient services to Veterans.

The proposed campus for Alternative A and B locations would include:

- Full service (inpatient/outpatient) 104-bed VA hospital with diagnostic and treatment facilities
- VBA regional office
- Central utility plant
- Geothermal system for heating and cooling the VBA regional office building
- Laundry facility
- Site lighting
- Parking decks for 3,000 vehicles
- Roads, sidewalks, and access (entrance/exit) points
- Stormwater management
- Above-ground potable water storage (water tower)
- Subsurface utility distribution systems
- Landscaping
- Other required site amenities and improvements
The full-service VA hospital includes the departments listed in Table 2-2. The proposed new VAMC would provide the same services (primary care, specialty care and inpatient care) as available at the existing Zorn Avenue facility. However, the new facility would be sized to accommodate a projected higher workload, incorporating additional functional capability and capacity and restructuring to deliver higher quality care to current and future Veterans, and allowing the VAMC to keep pace with technology and infrastructure needs in the evolving health care services field. Although the proposed bed count for a replacement VAMC is lower than that in the existing Zorn Avenue facility, it is consistent with VA’s projected workload which includes a decrease in inpatient demand (i.e., beds) and an increase in outpatient (clinic) demand. This is consistent with health care trends in both the VA and private sector. The replacement VAMC would accommodate the projected reduction in need for inpatient beds and also provide the necessary clinical space to accommodate the projected increase in outpatient services for a growing Veteran population. The increased out-patient capacity would also accommodate the current (and projected) patient workload at the three CBOCs that would be moved for consolidation within the new VAMC, thereby providing more efficient and effective delivery of outpatient services within the service area.

In accordance with current Congressional requirements and VA policy, the U.S. Army Corps of Engineers (USACE) would provide project support including review, comment and coordination through the design development phase; would take responsibility for design management through completion of construction documents; and would provide solicitation, award, and management of the construction contract. Thus, throughout this EIS, where the text states that “VA” would undertake a construction-related action, it is understood that USACE may undertake the action on behalf of VA. Also, where VA policies or specifications are cited related to construction activities, a comparable USACE policy or specification may be applied, achieving a comparable level of environmental protection.

The following sections summarize those buildings and campus features of the replacement VAMC campus that are common to both Alternative A and B, based on concept descriptions prepared by URS/SmithGroup (2014a, 2014b).
Table 2-2. Departments Proposed for Replacement Louisville VAMC.

<table>
<thead>
<tr>
<th>Department</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-AMERICAN FEDERATION OF GOVERNMENT EMPLOYEES (AFGE)</td>
<td>30-MEDICAL CENTER DIRECTOR SUITE (238)</td>
</tr>
<tr>
<td>2-AMBULATORY CARE-MEDICAL SURGICAL SPECIALTY CLINIC (282)</td>
<td>31-MEDICAL MEDIA SERVICE (248)</td>
</tr>
<tr>
<td>3-AMMS: ADMINISTRATION (284)</td>
<td>32-MENTAL HEALTH AND BEHAVIORAL PATIENT CARE UNITS (110)</td>
</tr>
<tr>
<td>4-AMMS: WAREHOUSE (291)</td>
<td>33-MENTAL HEALTH CLINIC (260)</td>
</tr>
<tr>
<td>5-AUDIOLOGY AND SPEECH PATHOLOGY SERVICE (204)</td>
<td>34-NUCLEAR MEDICINE SERVICE (260)</td>
</tr>
<tr>
<td>6-BUSINESS OFFICE HEALTH ADMINISTRATION SERVICE (246)</td>
<td>35-NURSING SERVICE ADMINISTRATION (254)</td>
</tr>
<tr>
<td>7-CARDIOVASCULAR LABORATORIES (210)</td>
<td>36-NUTRITION AND FOOD SERVICE (224)</td>
</tr>
<tr>
<td>8-CHAPLAIN SERVICE (208)</td>
<td>37-OBSERVATION/PATIENT UNITS (100)</td>
</tr>
<tr>
<td>9-CLINICAL SERVICES ADMINISTRATION (214)</td>
<td>38-OFFICE OF INFORMATION & TECHNOLOGY (232)</td>
</tr>
<tr>
<td>10-COMPENSATION AND PENSION PROGRAM</td>
<td>39-PACT PRIMARY CARE CLINIC (PPCC) (262)</td>
</tr>
<tr>
<td>11-CREDIT UNION (220)</td>
<td>40-PATHOLOGY AND LABORATORY MEDICINE SERVICE (240)</td>
</tr>
<tr>
<td>12 DENTAL SERVICE (222)</td>
<td>41-PHARMACY SERVICE (268)</td>
</tr>
<tr>
<td>13-DIGESTIVE DISEASES PROGRAM-ENDOSCOPY SUITE (287)</td>
<td>42-PHYSICAL MEDICINE AND REHABILITATION SERVICE (270)</td>
</tr>
<tr>
<td>14-EDUCATIONAL FACILITIES (402)</td>
<td>43-POLICE AND SECURITY SERVICE (279)</td>
</tr>
<tr>
<td>15-ELECTROENCEPHALOGRAPHY (EEG) LABORATORY NEW (226)</td>
<td>44-POLYTRAUMA REHABILITATION CENTER (111)</td>
</tr>
<tr>
<td>16-EMERGENCY MEDICAL SERVICES (EMS): SUPPORT/ADMINISTRATION (406)</td>
<td>45-PROSTHETIC AND SENSORY AIDS SERVICE (308)</td>
</tr>
<tr>
<td>17-EMS: LAUNDRY AND LINEN OPERATION (408)</td>
<td>46-PULMONARY MEDICINE (212)</td>
</tr>
<tr>
<td>18-EMS: LOCKERS, LOUNGES, TOILETS, AND SHOWERS (410)</td>
<td>47-QUALITY/STRATEGIC MANAGEMENT SERVICE</td>
</tr>
<tr>
<td>19-ENGINEERING SERVICE (230)</td>
<td>48-QUARTERS, ON-CALL (274)</td>
</tr>
<tr>
<td>20 EAR NOSE AND THROAT (ENT)</td>
<td>49-RADIOLOGY SERVICE (276)</td>
</tr>
<tr>
<td>21 EYE CLINIC NEW (233)</td>
<td>50-RESEARCH AND DEVELOPMENT (278)</td>
</tr>
<tr>
<td>22-FISCAL SERVICE (234)</td>
<td>51-SUBSTANCE ABUSE RESIDENTIAL REHABILITATION TREATMENT PROGRAM (SARRTP) (312)</td>
</tr>
<tr>
<td>23-GERIATRICS AND EXTENDED CARE SERVICE (261)</td>
<td>52-SOCIAL WORK SERVICE (282)</td>
</tr>
<tr>
<td>24-HUMAN RESOURCES MANAGEMENT (266)</td>
<td>53-SUBSTANCE ABUSE CLINIC (202)</td>
</tr>
<tr>
<td>25-INTENSIVE CARE NURSING UNITS (102)</td>
<td>54-SUPPLY PROCESSING AND DISTRIBUTION - SPD(285)</td>
</tr>
<tr>
<td>26-LIBRARY SERVICE (400)</td>
<td>55-SURGICAL SERVICE (286)</td>
</tr>
<tr>
<td>27-LOBBY (244)</td>
<td>56-VETERANS CANTEEN SERVICE (206)</td>
</tr>
<tr>
<td>28 MAGNETIC RESONANCE IMAGING (275)</td>
<td>57-VOLUNTARY SERVICE/SERVICE ORGANIZATIONS (290)</td>
</tr>
<tr>
<td>29-MEDICAL / SURGICAL INPATIENT UNITS (100)</td>
<td></td>
</tr>
</tbody>
</table>

Source: VA 2014
2.2.1.1 Site Organization and Appearance

VA would construct and operate a new replacement medical center and VBA regional office following the Atrium conceptual design (Figure 2-2). The Atrium concept for the replacement VAMC campus consists of a four-story east bar and a five-story west bar, separated by a central atrium and courtyard.

- The VBA building, medical center administration and support, and inpatient units would comprise most of the east bar.
- The west bar would primarily house outpatient clinics and diagnostic and treatment spaces.
- An enclosed atrium, illustrated in Figure 2-3, would be placed between the west bar and the medical center portion of the east bar. Where the atrium ends, this central space would continue as an outdoor courtyard between the VBA building and the north parking structure.
- Service functions would be located along the west side, including the ambulance entrance, loading docks, central utility plant, laundry, and water tower.
- A basement would extend beneath the west bar. Service and utility tunnels would connect the basement to small service and support areas below the east bar and the VBA building.
- Each bar would have a mechanical penthouse, and the west bar would have an additional electrical penthouse. The total height of the east and west bars, including penthouses, would be approximately 102 and 162 feet, respectively.
- Two parking structures would accommodate parking for a total of 3,000 vehicles, at the north and south ends of the site. Both structures would have rooftop solar panels.
- A small (1,600-square-foot) maintenance/service outbuilding for servicing fleet vehicles may be added to the site plan depicted in Figure 2-2 (Pozolo 2014).
- The site layout allows for future hospital expansion to the south, if needed, in the area between the VAMC and the south parking structure. Both the master plan and approved design have requirements to demonstrate that up to 25 percent expansion can be accommodated.

In 2016, in response to updated projections of the expected VAMC workload, VA downsized the proposed facility by 21 percent compared to initial design concepts shared with the public. This reduced the north-south length of the Atrium concept by about 95 feet, reduced the height of the east bar by nearly 40 feet and the west bar by nearly 20 feet, and decreased the required parking structure capacity.

With a design goal of achieving the Leadership in Energy and Environmental Design (LEED) rating of Silver, the building would utilize innovative energy recovery systems, proactive stormwater management, exterior building materials and design, and heat island and light reduction strategies that minimize impacts to the neighborhood and its environs.

Figure 2-4 shows the proposed exterior appearance of the four-story east bar, which would contain the main entrances.
Figure 2-2. Major Components of Atrium Concept for Replacement Louisville VAMC.
Note: While major components are applicable to both alternatives, the surrounding land uses are specific to Alternative A on Brownsboro Road.
Figure 2-3. Atrium and Courtyard.
2.2.1.2 VA Medical Center

The VAMC facilities would occupy approximately 898,500 square feet in both the west and east bars (URS/SmithGroup 2014b).

The medical center would employ approximately 1,750 persons when operating at full capacity, including staff from the existing facility and new hires. The inpatient areas (capacity of 104 beds) would operate 24 hours every day. Most administrative, outpatient diagnostic and treatment, and facility support activities would operate primarily during general business hours: Monday through Friday except holidays, from approximately 8 a.m. to 4 p.m.

2.2.1.3 VBA Regional Office Building

The VBA regional office building would occupy approximately 132,000 square feet in the east bar (URS/SmithGroup 2014b). The building would provide office space for 400 individuals, consisting of an estimated 357 VA employees and 43 Veterans service organization representatives (URS/SmithGroup 2014c). The VBA building would have a rectangular-shaped footprint with four floors and a partial lower level.

2.2.1.4 Central Utility Plant

A central utility plant would occupy approximately 44,000 square feet and would contain the equipment to power, heat, and cool the VAMC facilities. It would be separate from and located immediately southwest of the medical center building, and would provide the following utility services to the hospital basement through a direct-connecting utility corridor (URS/SmithGroup 2014a):
Chilled water
Heating water
Medium pressure steam for hospital kitchen equipment
Steam condensate return system
Domestic cold water
Domestic soft cold water
Domestic hot water
Domestic hot water recirculation
Medical compressed air
Medical vacuum
Oxygen
Fire protection water
Emergency power generation
Normal/redundant power source

The central utility plant would be buffered from the residential properties to the east by distance, other structures, and landscaping. Options are being evaluated to provide services to the non-mission critical VBA building either as systems tied into the VAMC central utility plant or separate systems at the VBA; details would be developed as the design for the proposed facility progresses.

To provide emergency backup in the case of loss of electrical power from the municipal utility, the power plant for the VAMC would house five 2.5-megawatt diesel generators and automatic switching equipment to provide standby generator capacity to support the mission critical facilities onsite during utility power failure (estimated to require just over 9 megawatts total capacity, with one additional generator and associated switchgear to meet the VA’s electrical design requirements) (URS/SmithGroup 2014a; Oculus 2013).

Dual-fuel (natural gas / #2 fuel oil) condensing water boilers would provide the heating water to be distributed throughout the hospital to serve perimeter heating systems, heating coils at the air handling units, reheat coils at the air terminal units, and cabinet unit heaters at the vestibules and stair towers. Dual-fuel steam boilers would generate steam to supply the laundry (as needed, see Section 2.2.1.6), domestic water heating plant, humidification, nutrition services/canteen, and sterile processing department; the steam system is expected to be efficient for these locations due to their fairly even year-round load profile and close proximity of these areas to the central utility plant (URS/SmithGroup 2014a).

The physical plant would also house a chilled water generation plant, with four 1,000-ton water-cooled centrifugal chillers (three operating and one standby) plus space for expansion (URS/SmithGroup 2014a). Four double-cell, induced-draft cooling towers would be installed on the roof of the chilled water plant to support the four chillers.

The standby generators and dual-fuel steam and water boilers combined requirement for #2 fuel oil, to supply mission critical requirements is the amount required to operate the equipment for 10 days in January (URS/SmithGroup 2014a). This fuel would be stored in five 40,000-gallon underground storage tanks adjacent to the southwest corner of the central utility plant.

2.2.1.5 Geothermal System for VBA Building

A geothermal heat pump system is proposed to serve the VBA regional office building. A geothermal heat pump system, also called a ground source heat pump or geoexchange system, is an electrically powered system that utilizes the ground as a large heat source or heat sink. The system takes advantage of
the constant ground temperature and thermal mass of a site’s underlying geology. The system utilizes the Earth as a heat source in the winter and as a heat sink in the summer.

The system proposed for the VBA building is a vertical bore closed loop system. A closed loop system does not extract nor come into direct contact with groundwater. Instead, a bore hole contains piping that is grouted into place. A heat transfer fluid, in this case consisting of water with small amounts of additives, would be circulated within the piping through the underground bores and back to the surface. A chemical shot feeder system would provide antimicrobial treatment, pH buffering, and corrosion inhibition for the heat transfer fluid in the closed loop system. The temperature of the fluid changes as it loops through the underground system. The warmed or cooled fluid, depending on the season, exchanges its heat in an above-ground refrigerant loop system, heating or cooling forced air that is ducted throughout the building.

It is estimated that 150 geothermal bores extending 400 feet deep are required to fully serve the VBA building. Each bore requires 400 square feet of surface space, on a 20-foot by 20-foot grid spacing, to provide a sufficient heat sink / heat source capacity. The preliminary site plan places the proposed geothermal bores in two groupings, one north of the VBA building and the other north of the north parking deck, both within the perimeter drive. A sample test bore would be drilled in each of these two areas during the design development phase, to more specifically determine thermal conductivity of the bores and to help refine the depth recommended for the field.

2.2.1.6 Laundry

The laundry would be located at the southwest corner of the west bar, accessible to the medical center and the central utility plant; it would occupy approximately 19,000 square feet. Steam could be supplied by the adjacent central utility plant, but the design team is evaluating options to reduce the requirement for steam equipment in the laundry in support of achieving LEED Silver certification.

2.2.1.7 Site Lighting

Lighting designs would be dictated in part by safety and security requirements. The design concept states that lighting fixtures planned along the perimeter of the campus should be the same style as other neighborhood site lighting fixtures. Exterior lighting would be controlled to reduce light pollution (URS/SmithGroup 2013).

2.2.1.8 Parking Decks

The Atrium concept includes two parking structures, one each at the north and south ends of the campus, with a total capacity for 3,000 vehicles. The north deck would have nine levels; it would be primarily for use by patients, VAMC visitors, and those using VBA regional office services. The south deck would have six levels; it would be primarily for staff parking, but also available for use by patients and visitors.

Almost all of the campus parking would be provided in these two parking decks. The additional small amount of surface parking would include 15 spaces in a surface parking lot at the southwest corner of the site, 4 parking spaces for recreational vehicles west of the north parking deck, and 4 vehicle inspection spaces located near the security gate at the main entrance.
2.2.1.9 Physical Security Measures

An eight-foot or higher perimeter fence would meet VA standards for mission critical facilities. Located along the property line, the fence is envisioned to be a nine-foot tall black ornamental metal picket fence around the entire perimeter.

2.2.1.10 Site Landscaping

Landscape materials would be appropriate to the climate, consider maintenance, and include a mixture of lawn, ground cover/perennials, shrubs, and trees. Landscaping on the site would be based on site use patterns and would follow the Concentric Plant Zones guidance as identified in VA’s Site Development Design Manual (VA 2013):

- **Inner Plant Zone** – close proximity to high use and high visibility areas, such as drop-offs and building entries. Plantings in this area would include landscape beds with four-season interest, ornamental trees, and some shade trees. Low water irrigation would be used in this zone.

- **Intermediate Plant Zone** – parking areas, access drives, and areas between buildings and other areas that would not be as visible or heavily used. Lower levels of landscape could include ornamental trees at focal points and significant intersections, shade trees along the boulevard and other roads, and shade trees along sidewalks for user comfort in hot summer months. Irrigation would not be provided in these zones.

- **Outer Plant Zone** – areas at the perimeter of the site. Where screening is not needed, the lowest amount of landscape materials would be installed in this zone, and would typically focus on shade trees in lawn areas. Along the expressway, evergreen screening trees would be installed to minimize views and buffer sound. To provide some screening between the VA facilities and the residential neighborhoods on the east and south sides, a combination of shade and ornamental trees would be planted, to form a row within the perimeter fence.

“Crime Prevention Through Environmental Design and Unobstructed Space” principles, particularly for visibility, would be followed in the landscaping of all areas of the campus (URS/SmithGroup 2014a). Lighting, video surveillance, emergency telephones, intrusion detection systems, and VA police operations would also contribute to the site security measures.

Roof gardens with low maintenance plant materials and rain harvesting strategies for irrigation are included in the design, as well as the potential for a terraced community garden in a courtyard south of the atrium (URS/SmithGroup 2014a).

2.2.1.11 Mitigation Measures and Best Management Practices

An integral component of the proposed project under both Alternatives A and B is the incorporation of measures to avoid, minimize, or compensate for adverse impacts and best management practices (BMPs). These are described in more detail in Chapter 5, Mitigation. VA would also comply with all applicable federal, state, and local regulations during construction and operation.

During project construction, the Louisville District of the USACE would have oversight for implementing best management practices and ensuring that all permits are secured in a timely manner prior to the start of any work covered by those permits. The USACE would also ensure that all construction activities are in compliance with applicable regulations, guidelines and policies.
2.2.2 Alternative A - Replacement VAMC at Brownsboro Site

Under Alternative A, VA would construct and operate a new replacement medical center and VBA regional office following the Atrium conceptual design (Figure 2-2) at the Brownsboro Site in Louisville, Kentucky (Figure 2-5). The 34.9-acre site is located at 4906 Brownsboro Road in the Holiday Manor area, approximately seven miles east of downtown Louisville. The property is located on the south side of Brownsboro Road near its intersection with U.S. Highway 42 (US 42). The property is currently vacant, undeveloped, and predominantly grass-covered. VA purchased the Brownsboro Road property on July 10, 2012. The Brownsboro Site has not been improved or developed by VA and could be used by VA for another purpose or sold should VA choose another site for the proposed VAMC.

The full-service VA hospital includes the departments listed in Table 2-2. The site plan for the proposed concept under Alternative A is presented in Figure 2-6. The conceptual design may be revised further to respond to new information and details on site function and operation requirements, mission priorities, mitigation measures to address potential environmental impacts, funding constraints, or other factors. The size of the VAMC is based on current and projected needs, but the design would ensure adequate flexibility for some expansion consistent with standard VA design practice. Specifically, the concept developed for analysis of alternatives demonstrates that a design can satisfactorily accommodate future expansion of up to 25 percent within the bounds of the sites evaluated as alternatives within the EIS.

2.2.2.1 Site Organization and Appearance

As described in Section 2.2.1.1, the Atrium concept (Figure 2-2) for the replacement VAMC campus consists of a four-story east bar and a five-story west bar, separated by a central atrium and courtyard, and is common to both alternatives. At the Brownsboro location, the west bar (housing outpatient clinics and diagnostic and treatment spaces) would be located closest to the Watterson Expressway (see Site Plan in Figure 2-6).

Reducing the size of the facility, as described in Section 2.2.1.1, allowed VA to modify the site plan for the Brownsboro property to locate taller buildings and service components at the north and west edges of the site, away from residential areas. The VBA building was re-located to the north and the higher parking structure re-located closest to Brownsboro Road.

The main entrances of the four-story east bar (housing VBA building, medical center administration and support, and inpatient units as shown in Figure 2-4) would face the adjacent residential neighborhood to the east of the Brownsboro location.

Site landscaping has been described in Section 2.2.1.10. The proposed facilities would occupy approximately 21 acres of the 35-acre site; the remaining would be green space (approximately 13.6 acres).
Figure 2-5. Locations of Alternatives A, B, and C.

Figure 2-6. Proposed Site Plan for Alternative A Location.

2.2.2.2 Site Access and Circulation

Vehicular

Vehicles would enter and exit the campus from Brownsboro Road at the north edge of the site. Ambulances and service, delivery, and maintenance vehicles would use a right-turn-only lane upon entering the campus and continue to the three-lane western perimeter road that services the ambulance entrance, loading docks, central utility plant, laundry, and other maintenance functions. Two other entrance lanes would continue along the eastern side of the campus to access the north parking garage, main patient/visitor drop-off entrance, and the south parking garage. The eastern perimeter road would be a divided drive with turnarounds and a traffic circle at the south end. Two exit lanes to Brownsboro Road and Northfield Drive would be part of the main entrance configuration.

An emergency access drive from Carlimar Lane would be located at the south edge of the property. This entry would be gated, locked, and accessible only when emergency vehicles could not access the main entrance on Brownsboro Road (such as in the case of a traffic accident or other road blockage). VA is committed to limiting its use of this small residential street and would require its construction contractor to assist city officials and residents in close proximity to the site (the Crossgate and Graymoor-Devondale communities in particular) with proper directing of traffic to and from the site; this would include the use of appropriate temporary signage, and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers. Once the VAMC is operational, VA campus police would also have jurisdiction onsite within the boundaries of the VAMC campus and would be used to enforce access restrictions.

Transit and Pedestrian

The Transit Authority of River City (TARC) provides public transportation through the area adjacent to the site. TARC Route 15 Market runs along Brownsboro Road and Northfield Road. The master plan for the replacement VAMC recommended that this route be realigned to enter the site from Brownsboro Road and serve both the VBA regional office and the medical center. If the bus route is extended into the site, a bus stop would be located between the VBA and main hospital entrances. Buses would then be able to head south to the traffic circle to turn around and exit the site. VA would encourage TARC to extend bus routes onto the campus and, if employee and patient demand warrants it, VA would work with TARC to see if more routes can be added to improve service and reduce personal vehicle trips.

Pedestrian access to the campus would be co-located with the vehicle entrance from Brownsboro Road. Sidewalks would provide pedestrian connections to Brownsboro Road, parking decks, and campus facilities. Canopies and covered sidewalks at drop-off locations and between parking decks and entry lobbies would be provided for user comfort and safety. Sidewalks would be constructed to meet Architectural Barriers Act guidelines and VA standards. The installation of pedestrian crossing facilities outside of the VA campus, such as signals, ramps, and pavement markings at the vehicle entrance from Brownsboro Road, would be subject to state and municipal plans in conjunction with improvements of the I-264 interchange at Brownsboro Road. Pedestrian access to Carlimar Lane is not planned.

2.2.2.3 Service / Deliveries

The loading dock for deliveries and shipping would be located along the western side of the campus between the west bar and the expressway. It would include 10 to 14 bays with recessed docks. These bays would be sized to accommodate full-sized tractor trailers. Loading docks would be covered and connected with an at-grade walk to the hospital and the laundry.
2.2.2.4 Stormwater Management

Approximately 65 percent of the site would be covered with impervious surfaces (buildings, roads, sidewalks). The Louisville and Jefferson County Metropolitan Sewer District (MSD) requires that site stormwater discharges be limited to the pre-development rates. Stormwater collection would be provided by a combination of surface and sub-surface detention basins.

Three surface dry-type detention basins and four subsurface storage tanks would temporarily impound water for gradual discharge. Two surface detention basins would be located at the north end of the site, and one at the south end. Three subsurface tanks would be placed along the west side of the site and one in the southeast corner.

Water detained in the basins and subsurface tanks would be discharged at the allowed discharge rates. Stormwater discharge from the site would be directed toward the storm sewer system ditch maintained by the Kentucky Transportation Cabinet (KYTC) along Watterson Expressway, along the western property boundary. Drainage from the site would not be directed towards, or through the perimeter fence on the site's east and south boundaries where neighboring residences are located.

2.2.2.5 Utilities

Offsite Utilities would be routed to the central utility plant via underground ducts, conduits, and/or piping and then distributed directly to the VAMC/VBA. Any remote building utilities would be through similar means underground.

Sanitary Sewer

The MSD has stated that the sanitary sewer system has sufficient capacity to accept discharge from the new facility, subject to Department of Water approval, based on an average daily flow of 170,500 gallons and a peak flow of 875,000 gallons per day. The connection to the MSD sewer system would be at the southwest corner of the site at an existing manhole within the Carlimar Lane right-of-way.

An underground sanitary sewerage holding tank would be installed in the southwest corner of the site, to store a minimum of four days of hospital flows and seven days of “disaster-mode” central utility plant flows (the minimum required for a mission critical facility). The sewerage holding tank would have a capacity of 565,000 gallons, and would be approximately 90 feet in diameter and about 15 feet deep. Once sewer service is restored, an exterior dual pump lift station would lift the stored sewerage, allowing the contents to empty by gravity into an onsite manhole and into the MSD system.

Water

Domestic and fire protection water service would be provided by the Louisville Water Company (LWC), who has indicated there is adequate system looping and capacity to serve the new medical center. There would be two points of connection to the city system to ensure continuous service. Connections would be to the water mains in Brownsboro Road and Carlimar Lane. These two source mains would connect to the water tower (see below) and provide for site distribution via a 12-inch main along the west side and a 10-inch main along the east side of the property, connecting to 8-inch east-west water service lines serving the facilities. A fire hydrant would be located at least every 300 feet, in accordance with VA requirements.

A water tower would be located in the northwest section of the site. The water tower capacity would be based on the VA requirements to hold a minimum of 96 hours of domestic water use (approximately
674,000 gallons, allowing for 25 percent future expansion) plus 120,000 gallons of fire suppression water (URS/SmithGroup 2014a). The water tower design could be multi-column, composite or hydropillar, or fluted pillar; a multi-column tower is the current recommendation of the VA’s design consultant, based on cost considerations for a tank of the required size.

Natural Gas

Natural gas would be provided by the Louisville Gas and Electric Company (LG&E). Natural gas primary service would be extended from LG&E’s natural gas main along Brownsboro Road to the central utility plant. Separate connections and metering for the VBA would be provided from this primary service extension. A second, redundant service would also be required to serve the central utility plant and medical center as mission critical facilities. This second service would be coordinated with LG&E, and could possibly come from the highway right-of-way.

Communications

Telecommunications and data would be provided by AT&T Kentucky. Service connections would be along Brownsboro Road. The hospital would require redundant service in a separate distribution separated by at least 100 feet. The primary service would be routed from Brownsboro Road to the hospital, and the redundant service may come from either the highway right-of-way or from Carlmar Lane. The VBA would have separate telecommunication/data service from Brownsboro Road. Distribution to other buildings would come from the hospital.

Electricity

Electrical service would be provided by LG&E. There is no nearby electrical source capable of serving this site. However, there are three possible locations from which primary and secondary services can be extended to the campus. To accommodate the dual and independent service needs of the medical center as a mission critical facility, service would need to be provided from two separate sources. The three potential source locations are:

1. **Taylor Substation:** This substation is approximately one mile west of the site along Brownsboro Road. Minor upgrades to this facility would be required and it would have the ability to serve approximately six megawatts of power along a new circuit extension from the substation to the site along Brownsboro Road.

2. **Lyndon Substation:** This substation is located approximately 3.5 miles from the site, at Ormsby Road and Railroad Road. The substation currently has no capacity to service this site. It would require a substation expansion (limited space) and a 3.5-mile extension of a single circuit to accommodate the campus.

3. **New Substation:** LG&E has purchased property at the southwest corner of the I-71 interchange with US 42. This site can have a new substation built to meet the capacity needs of the new medical center campus, and a new circuit can be extended approximately 1.5 miles to the site.

LG&E has stated their commitment to providing service to the new medical center, and once their analysis is complete, they are confident they would be able to provide required redundant service sources to the site. Ordinarily, LG&E would provide a single service source at its cost, requiring customary payment of up-front fees to cover initial capital costs that would be rebated as electricity was consumed and billed. But because VA requires redundant, physically separated sources, LG&E would provide primary service through design and construction of a new substation. This substation would provide
service to both the VAMC and the surrounding area but VA would be required to pay up to 25 percent of the cost for design and construction, which would be rebated over time as electricity was consumed and billed. VA would also be required to pay 100 percent of the cost of a secondary feed from an existing substation to meet its need for a redundant electrical source. Under any of the three options, the two sources to the site would be brought in from the north along Brownsboro Road. The primary line would be brought to two locations, and a primary switch gear at each location would allow extension to the central utility plant along separate routes.

Each primary and redundant service site would require a minimum of 100 feet separation. Each would be routed to the central utility plant in concrete-encased duct banks along the east and west perimeter roads. Electrical distribution would come from the central utility plant and be routed to each location requiring service. The hospital, as a mission critical facility, would require two service leads: primary service routed in concrete-encased ducts and redundant service routed through the utility tunnel from the central utility plant.

In accordance with the VA’s intention to achieve a LEED Silver certification, photovoltaic (solar) panels for additional electrical energy generation would be installed on the roofs of the two parking decks, as well as the roof of the VBA building (URS/SmithGroup 2014a).

2.2.2.6 Construction and Operation Milestones

All potential scheduling for the proposed construction and operation of the replacement Louisville VAMC is subject to change, due to factors such as the timing and availability of federal budget actions and appropriations, adjustments to construction planning and phasing, and construction interruptions or delays due to unforeseen events. The sequence of milestones in Table 2-3 can be used as a general reference for the timing of activities related to Alternative A, subject to these external factors.

Table 2-3. Proposed Milestones for Construction and Operation Alternatives A (Preliminary*).

<table>
<thead>
<tr>
<th>2017—Spring: EIS Record of Decision Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017—Winter: Final design complete</td>
</tr>
<tr>
<td>2018—Fall: Construction begins</td>
</tr>
<tr>
<td>Central utility plant</td>
</tr>
<tr>
<td>Hospital</td>
</tr>
<tr>
<td>Site work:</td>
</tr>
<tr>
<td>underground utilities</td>
</tr>
<tr>
<td>water and sanitary storage</td>
</tr>
<tr>
<td>stormwater management</td>
</tr>
<tr>
<td>circulation roads</td>
</tr>
<tr>
<td>surface parking</td>
</tr>
<tr>
<td>rough grade earthwork</td>
</tr>
<tr>
<td>VBA</td>
</tr>
<tr>
<td>Parking decks</td>
</tr>
<tr>
<td>Laundry</td>
</tr>
</tbody>
</table>
Table 2-3. Proposed Milestones for Construction and Operation Alternatives A (Preliminary*).

<table>
<thead>
<tr>
<th>Site work:</th>
<th>site lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>finish grading</td>
<td>landscape</td>
</tr>
<tr>
<td>walks</td>
<td>site furnishing</td>
</tr>
<tr>
<td>plazas</td>
<td>other site finishes</td>
</tr>
<tr>
<td>plantings</td>
<td></td>
</tr>
</tbody>
</table>

- **2022- Winter: Construction complete**
- **2023- Summer: Replacement VAMC campus opens**

*Subject to budget/appropriations, further construction planning/schedules, unforeseen events.

2.2.3 Alternative B - Replacement VAMC at St. Joseph Site

Under Alternative B, VA would construct and operate a new replacement medical center and VBA regional office following the Atrium conceptual design (Figure 2-2) at the St. Joseph Site in Louisville, Kentucky, approximately 10.8 miles east of the existing Louisville VAMC. The approximately 99-acre site is located east of I-265 and south of Factory Lane in Louisville, spanning street addresses 13508, 13605, and 13615 Factory Lane (Figure 2-5). The property is mostly unimproved, agricultural land with abandoned farmstead outbuildings in the northwestern portion of the site. The southern and central portions of the site are relatively level; the northern portion slopes downward to a creek that crosses the northern portion of the property.

After the initial identification of the St. Joseph Site as a reasonable alternative for a proposed VAMC, the site has come under contract, with an eventual sale dependent on the ability of the new owner to obtain zoning approval for a large mixed use development plan. Information regarding this plan can be found at: http://portal.louisvilleky.gov/codesandregs/permit/detail?type=ZONE&id=16ZONE1019. However, as of April 2017, the sale has not been finalized. VA could still negotiate for the purchase of the property for a new VAMC even if a sale to a new owner were finalized. Therefore, for purposes of the EIS, VA assumes that the entire St. Joseph Site remains available for development for the proposed VAMC campus, and has retained Alternative B as a viable alternative with the same planned development as evaluated in the Draft EIS.

The site organization, details of facilities, and design concept would be similar to those for Alternative A, adjusted as needed to accommodate site-specific features. VA recognizes that the Brownsboro and St. Joseph Sites do vary with respect to certain features (e.g., available acreage, topography), and that the site plan for the St. Joseph Site, if selected, could be further modified during final design in order to more efficiently and effectively accommodate the site specific characteristics of this property (e.g., footprint, building height and number of ingress and egress locations). However, it is reasonable to assume in this EIS the use of the same basic design and footprint for the proposed replacement VAMC at each alternative action site location. Developing different designs and architectural renderings for each site is not appropriate for this stage of the planning process. The details common to both alternatives are presented in Section 2.2.1.

A general representation of the same site plan on the St. Joseph Site is provided in Figure 2-7 on page 41. At this location, assuming a main entrance off of Factory Lane, the west bar would be closest to Interstate 265 and the apartment complex on Vendetta Way, although there is significantly more buffer between the
apartment complex and the proposed VAMC than at the Brownsboro location. VA notes that while the overall footprint is shown to be the same for both locations, placement of the proposed project within the St. Joseph parcel (as shown in Figure 2-7) is based on specific-site features (e.g., topography, drainage, offsets from road and nearby residential development).

In addition, VA has accounted for some site specific differences in design at the St. Joseph Site, such as relating to site access and circulation, stormwater management and utilities; these are described briefly below.

- Vehicles would enter and exit the campus from Factory Lane at the north edge of the site. Ambulances and service, delivery, and maintenance vehicles would use a right-turn-only lane upon entering the campus and continue to the three-lane western perimeter road that services the ambulance entrance, loading docks, central utility plant, laundry, and other maintenance functions. Two other entrance lanes would continue along the eastern side of the campus to access the north parking garage, main patient/visitor drop-off entrance, and the south parking garage. The eastern perimeter road would be a divided drive with turnarounds and a traffic circle at the south end. Two exit lanes to Factory Lane would be part of the main entrance configuration.

- Secondary and/or emergency access drive(s) would be located at Bush Farm Road (eastern boundary) and/or Terra Crossing Boulevard (southern boundary). Like the main entry, the secondary entry would be gated, unlocked and accessible.

- TARC does not currently provide public transportation to the site. Route 31 is the nearest bus route, providing infrequent bus service (6:40 a.m., 7:06 a.m., 8:44 a.m., 3:28 p.m., 4:12 p.m. and 5:02 p.m.) to O’Bannon Station Way in the Eastpoint area, which is on the west (opposite of the site) side of I-265. This bus stop is about 2.2 miles by road from the St. Joseph Site. VA could consider operating a shuttle between this bus stop and a replacement VAMC campus, but this schedule would be more helpful to commuting employees than to Veterans whose appointments could occur throughout the day.

- Pedestrian access to the campus would be co-located with the vehicle entrance from Factory Lane. Sidewalks would provide pedestrian connections to Factory Lane, parking decks, and campus facilities. Canopies and covered sidewalks at drop-off locations and between parking decks and entry lobbies would be provided for user comfort and safety. Sidewalks would be constructed to meet Architectural Barriers Act guidelines and VA standards. Pedestrian crossing facilities outside of the VA campus, such as signals, ramps, and pavement markings at the vehicle entrance from Factory Lane, would be subject to state and municipal plans, but as this is not currently a pedestrian-intensive area, any such improvements would be unlikely. Pedestrian access at a secondary entrance at Bush Farm Road and/or Terra Crossing Boulevard could be considered.

- Approximately 23 percent of the site would be covered with impervious surfaces (buildings, roads, sidewalks). MSD requires that site stormwater discharges be limited to the pre-development rates. Stormwater collection would be provided by a combination of surface and sub-surface detention basins. A combination of surface dry-type detention basins and subsurface storage tanks would temporarily impound water for gradual discharge, with their locations and discharge details to be determined should VA select this site for the replacement VAMC. Water detained in the basins and subsurface tanks would be discharged at the allowed discharge rates.

- LWC supplies potable water to the St. Joseph Site. LWC indicated that it can provide water supply to the St. Joseph Site along the northern boundary (Factory Lane) where there is an
existing 12-inch water main. A one-million-gallon municipal water supply tower stands outside of the southern boundary of the St. Joseph Site.

- LG&E supplies the natural gas and electrical services to the St. Joseph Site. LG&E stated that natural gas and electric services are available for the proposed development.

- MSD supplies stormwater and sanitary sewer service to the St. Joseph Site. MSD also stated that the Floyds Fork Treatment Plant was recently expanded and has ample capacity to accept new inflow from a VAMC at the St. Joseph Site.

- AT&T provides telecommunication services to the St. Joseph Site.

- The proposed facilities would occupy approximately 21 acres of the 99 acre site; the remaining would be green space (approximately 78 acres).
Figure 2-7. Site Plan Representative Illustration at St. Joseph Site.
All potential scheduling for the proposed construction and operation of the replacement Louisville VAMC related to Alternative B is subject to change, due to factors such as the timing and availability of federal budget actions and appropriations, adjustments to construction planning and phasing, and construction interruptions or delays due to unforeseen events. In general, construction at this site would likely be delayed by up to 12 months compared to Alternative A to allow for site procurement; site adaptation for final design could be concurrent with land acquisition. Otherwise, once construction begins, it would be approximately the same time duration for both sites. The sequence of milestones in Table 2-4 can be used as a general reference for the timing of activities related to Alternative B, subject to these external factors.

Table 2-4. Proposed Milestones for Construction and Operation Alternative B (Preliminary*).

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017—Spring</td>
<td>EIS Record of Decision Published</td>
</tr>
<tr>
<td>2018—Spring</td>
<td>Property Acquisition Complete</td>
</tr>
<tr>
<td>2018—Summer</td>
<td>Final design complete</td>
</tr>
<tr>
<td>2019—Spring</td>
<td>Construction begins</td>
</tr>
<tr>
<td>Central utility plant</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
</tr>
<tr>
<td>Site work:</td>
<td>circulation roads</td>
</tr>
<tr>
<td>blasting (if needed)</td>
<td>surface parking</td>
</tr>
<tr>
<td>underground utilities</td>
<td>rough grade earthwork</td>
</tr>
<tr>
<td>water and sanitary storage</td>
<td></td>
</tr>
<tr>
<td>stormwater management</td>
<td></td>
</tr>
<tr>
<td>Site work:</td>
<td>site lighting</td>
</tr>
<tr>
<td>finish grading</td>
<td>landscape</td>
</tr>
<tr>
<td>walks</td>
<td>site furnishing</td>
</tr>
<tr>
<td>plazas</td>
<td>other site finishes</td>
</tr>
<tr>
<td>plantings</td>
<td></td>
</tr>
<tr>
<td>VBA</td>
<td></td>
</tr>
<tr>
<td>Parking decks</td>
<td></td>
</tr>
<tr>
<td>Laundry</td>
<td></td>
</tr>
<tr>
<td>Site work:</td>
<td>2023—Summer: Construction complete</td>
</tr>
<tr>
<td>finish grading</td>
<td>2023—Winter: Replacement VAMC campus opens</td>
</tr>
<tr>
<td>walks</td>
<td></td>
</tr>
<tr>
<td>plazas</td>
<td></td>
</tr>
<tr>
<td>plantings</td>
<td></td>
</tr>
</tbody>
</table>

*Subject to budget/appropriations, further construction planning/schedules, unforeseen events.
2.2.4 Alternative C – Continue Operating from Existing VAMC (No Action)

No Action consists of not constructing and operating a replacement VAMC and VBA regional office. VA would continue to operate the existing Louisville VAMC at 800 Zorn Avenue, all eight CBOCs, and the VBA regional office at 321 West Main Street, as illustrated in Figure 1-1.

The existing VAMC is more than 60 years old. It is an 816,000-square-foot hospital located on a 47-acre suburban site approximately five miles east of downtown Louisville. The existing VAMC site contains approximately 22 acres of land in the central and northwestern portions of the site that are fully developed with the eight-story to nine-story main hospital building, several smaller buildings, and approximately 1,200 surface-level parking spaces. Areas of the site to the south, east, and northeast of the developed areas steeply slope down from the developed areas and are heavily wooded (Figure 2-8). More than 1,600 employees provide specialized hospital-based and outpatient care to Veterans living in the Louisville service area.

The No Action Alternative would challenge VA's ability to safely, economically, and consistently provide high-quality, integrated health care and services to the region's Veterans and, therefore, would not meet the purpose of and need for action.
Figure 2-8. Existing Louisville VAMC Campus.
2.3 Alternatives Identified but Not Evaluated in Detail

Two additional potential sites for a replacement VAMC campus were initially considered by VA: the Fegenbush Site and the Downtown Site. These two sites were eliminated from further consideration and thus not further evaluated in this EIS for the reasons summarized below.

2.3.1 Fegenbush Site

The Fegenbush Site is located east of Fegenbush Lane and north of South Hurstbourne Parkway, approximately 8.0 miles southeast of the existing Louisville VAMC. This site consists of approximately 51 acres of unimproved, mostly agricultural land. The majority of the property is relatively level, with a moderate slope to the south in the southern portion of the property. Strips of wooded land separate agricultural tracts in the central portion, and there are remnants of farm buildings in this portion. The southwestern portion is wooded land. A possible wetland area is located in the western portion of the site. Table 2-1 in Section 2.1 includes a summary of additional characteristics of the Fegenbush Site.

Feasibility and environmental review of the Fegenbush Site identified the following factors that indicated the Fegenbush Site is not a reasonable alternative:

- The property is in an undesirable location for a Medical Center in that it is not near a central business district or suburban town center, has few, if any local amenities (such as shopping and restaurants) in reasonable proximity to the site, is located in close proximity to an industrial park, and is miles from the nearest major highway (two miles north of I-265 and three miles east of I-65).
- Two archaeological sites are known to be located onsite but have not been assessed. Archaeological survey and further consultation with the State Historic Preservation Officer under Section 106 of the National Historic Preservation Act would be required to determine suitability of the site for construction. The availability of other site options did not support investment in further site assessment to determine suitability.
- Biological surveys would also have been required because the site is within potential Indiana bat habitat range and site habitat may support running buffalo clover and Kentucky glade cress.
- Shallower depths to bedrock (4-11 feet) than the other sites would result in potentially more blasting and excavation to achieve subgrade foundation elevations.
- Although a primary electrical feed would be available for the proposed VAMC, installation of the mandatory backup feed would require extensive reworking of existing lines and additional right of way.

Subsequent investigation also revealed the site to be encumbered by a commercial interstate natural gas pipeline running through different portions of the site. The pipeline, which is not desirable or consistent with a health care use, comes with a 100-foot clear width easement which could potentially complicate design and construction of a Medical Center campus and potentially cost an additional $5-$10 million and add potentially years of planning, coordination and construction, to relocate off the property.

In summary, the Fegenbush Site was considered an unreasonable alternative primarily due to its undesirable location. Its distance from major highways would involve more complicated navigation for patients, staff, and visitors and its proximity to an industrial park and lack of significant adjacent amenities would provide a less than desirable Veteran and patient experience. The combination of the
location issues, the shallower depth to bedrock, the likely costly utility issues that would potentially involve significant time and expense to resolve, and the archeological and ecological concerns combined to make the site an unreasonable alternative that resulted in it being eliminated from further consideration.

2.3.2 Downtown Site

VA considered and evaluated a potential downtown location in the feasibility study in 2009, and again as part of the top five sites identified and evaluated in the 2010-2011 site selection study. The feasibility study evaluated two downtown options: (1) construction of a new hospital (inpatient and outpatient) near the University of Louisville Downtown Medical Center and a new 2,400 space parking structure on a contiguous 16-acre site; and (2) a split development that included construction of a new 400,000 gross square feet (GSF) inpatient facility with parking (800 spaces expandable to 1200 spaces) structure on a contiguous 16-acre site, and renovation of the Zorn Avenue campus (Building 1) to accommodate remaining ambulatory care services, research, etc., along with construction of a new parking structure (1,600 spaces - expandable to 2,400).

For a potential downtown site location, the feasibility study evaluated an area bounded by Campbell to the east, Broadway to the south, Jackson to the west and Mohammed Ali to the north) and identified the following issues, most of which would be applicable to any downtown location:

- Multiple approaches to the site can be an issue for security requirements and can cause confusion and stress because of the one-way streets and limited access to and from the expressways.
- Veteran survey results identified, overwhelmingly, Zorn Avenue as the preferred site. Veterans have positive experiences and associate their quality of care to the distinctive nature of the campus at Zorn Avenue that is dedicated to the Veterans. There is a perception that because Veterans would be among other types of patients in the downtown options, they will be treated as second class citizens.
- The existing downtown street grid creates development blocks that are smaller in size than the replacement VAMC and parking requires. This would require a future facility to be developed on more than one downtown block and limits future expansion.
- Land acquisition presents challenges in terms of federal obligations, potential historical resources, possible clean up of contamination and the length of time required for the City to purchase (or use eminent domain) to turn over to VA and run through the VA process prior to design and construction phases.
- Long term functional and duplication of services would be inherent with the split facility option that would add to construction and operational costs.

In late 2010 and 2011, VA subjected the existing Zorn Avenue Site, a downtown parcel assemblage specifically proposed by the City of Louisville and University of Louisville, and the top three sites resulting from the process of identifying willing offers of property, to rigorous screening, including Phase 1 environmental assessments, land surveys, geotechnical investigations, and additional onsite environmental investigations. The Downtown Site location was defined as just to the southeast of the University of Louisville Healthcare Center, approximately 3.0 miles southwest of the existing Louisville VAMC. It is generally bounded by South Jackson Street to the west, East Madison Street to the north, South Clay Street to the east, and East Broadway Street to the south. This site includes approximately 29 acres and encompasses five city blocks with associated roads and alleys. The Downtown Site is an assemblage of 80 parcels owned by 20 property owners. It is developed with several commercial and
retail buildings and parking lots. Table 2-1 in Section 2.1 includes a summary of additional characteristics of the Downtown Site.

Feasibility and environmental review of the Downtown Site identified the following factors that indicated the Downtown Site is not a reasonable alternative:

- The site assemblage contains part of Phoenix Hill Historic District, including eight structures that contribute to the historic district or are individually eligible for listing on the NRHP, and Green Street Baptist Church, which is listed on the NRHP. Further consultation under Section 106 of the National Historic Preservation Act would be required.

- Green Street Baptist Church, a Louisville landmark and historic African American Baptist Church that predates emancipation, has repeatedly reiterated their desire to resist relocation.

- The site includes several current and historic operations of environmental concern: gas stations, auto repair shops, dry cleaners, and industrial operations. A thorough Phase II environmental site assessment and asbestos survey would be required. Soil in the northern portion of the site is contaminated with lead. Approximately 20 older buildings onsite likely contain asbestos. Remediation (at minimum, underground storage tank removal and proper handling of soils) and asbestos abatement would be required, coordinated with the Kentucky Department for Environmental Protection and the City of Louisville.

- Rush hour traffic in the site area is high, although the transportation infrastructure is likely adequate for a new VAMC with minimal improvements.

- The primary electrical feed to the proposed VAMC would require a new substation.

As outlined above, VA determined that considerable environmental and cultural resource issues existed with the Downtown Site. VA’s 2009 feasibility study concluded that these issues represented significant risk to project cost and schedule, while also presenting significant challenges to Veteran experience. This was due to the need for complex demolition, significant environmental cleanup, significant effort to relocate existing property owners, and/or considerable efforts to satisfactorily overcome impacts to cultural resources. VA also considered the potential risk of litigation associated with assembling approximately 80 parcels from some potentially unwilling property owners. As noted in the Veteran preference survey, and also voiced by several Veterans during the recent public comment period, a Downtown Site would also result in challenges for Veteran experience due to the complexity associated with navigating the maze of one-way downtown streets, the heavy traffic in and around downtown areas, and the difficulties to find suitable parking. Many of these same issues were detailed in the Phase I environmental investigations performed for the downtown assemblage in 2010 and 2011 which contributed to VA’s ultimate conclusion that a downtown location was not a reasonable alternative warranting further evaluation. For these reasons, the Downtown Site was eliminated from further consideration.

2.3.3 Reconfiguration of Existing VAMC

As part of the Feasibility Study, VA considered two options for reconfiguring the existing VAMC: (1) full replacement with new parking structure; and (2) new construction of 400,000 GSF of inpatient space and renovation of 400,000 GSF of outpatient space with new parking structure. A third option combined a new downtown location (construction of a new 400,000 GSF inpatient facility with parking (800 space expandable to 1200 spaces) structure on a contiguous 16-acre site) with renovation of the Zorn Avenue campus (Building 1) to accommodate remaining ambulatory care services, research, etc., along with construction of a new parking structure (1,600 spaces - expandable to 2,400).
After careful study, VA determined that reconfiguration (consisting of renovation and expansion) of the existing Robley Rex VAMC was not feasible. As summarized in Section 1.2, the specific factors that preclude renovating or making major additions to the existing VAMC are:

- Hospital infrastructure that does not allow renovations to meet current design criteria
- No appreciable vacant space on the campus for expansion
- Parking that is limited to 1,200 spaces with no place to expand.

Because the existing VA facility must remain operational during renovation or new construction, the greatest challenges are physical in terms of congestion and construction issues. The most critical is the amount of available space on the site for staging and facility replacement. This would have a significant effect on the logistics/time to complete a full build out or partial build out and renovation of the necessary programs and on the ability to maintain ongoing delivery of quality health care.

To “rebuild” or renovate facilities at the current Zorn Avenue location would not resolve the issues that are driving the need for a replacement medical center campus. The existing structure and floor-to-floor heights of the main hospital building do not support the needs of modern health care. Imaging systems require significant structural support and heavy shielding, along with significant vertical clearances to accommodate piping, ventilation, and other supporting utilities. These requirements cannot be met in structures built in the 1950s. In addition, the existing structures cannot accommodate VA’s current hospital building system standard which utilizes interstitial space to make it feasible to maintain supporting systems and reconfigure space as necessary to adapt to the ever changing requirements of health care delivery.

Reuse scenarios are also challenged by the presence of natural features on the site, including vegetation, steep slopes, rock and sub-grade materials and the floodplain. These can be mitigated but at significant cost.

There is also no swing space available on the campus to accommodate renovations or new construction without significant adverse impact to ongoing delivery of health care. While the Zorn Avenue campus is approximately 47.75 acres in total, only about 22 acres are actually developable given its karst geology and uneven topography, which includes heavily wooded ravines, steep hills, small caverns and wetlands. Any attempt to create swing space or new parking through new construction would disrupt existing parking which would significantly impair Veteran access to the facility. VA has exhausted avenues to rent reasonably priced nearby parking and cannot meet the current parking demand, much less the additional burden that construction would bring. Building a parking structure into the side of the hills in the ravine and wetland areas is not only impractical but would result in ongoing maintenance challenges over and above a typical parking structure.

Additional environmental considerations that would have to be addressed to accommodate a reconfiguration include the following:

- The VAMC is within range of a known Indiana bat maternity colony and site habitat may support running buffalo clover; both the Indiana bat and the running buffalo clover are protected under federal (Endangered Species Act) and state law. Habitat values are moderate to high in the eastern, non-developable portion of the site. Surveys would be needed because noise and vibration from construction activities could indirectly affect the Indiana bat. Coordination with the U.S. Fish and Wildlife Service would be required, possibly including formal consultation under Section 7 of the Endangered Species Act.
• The existing VAMC hospital was built in 1952 and is eligible for listing on the NRHP. Consultation with the State Historic Preservation Office under Section 106 of the National Historic Preservation Act would be required before any renovations or changes to the facility.

• The site is located in a high karst potential area with known sinkholes. Rock blasting and extra building foundation efforts would likely be required for any new construction.

• There are radon, lead and asbestos abatement issues that would have to be mitigated.

For these reasons, and the fact that it would take longer to construct and would result in significant adverse impact to ongoing delivery of health care, reconfiguring the existing VAMC at Zorn was eliminated from further consideration.

2.3.4 Alternative Site Concepts

Three other conceptual designs for the Brownsboro Road campus were evaluated, as illustrated in the thumbnail sketches below:

The Interlock concept (upper left) was initially selected as the preferred design option. However, subsequent review of the criteria suggested that critical departmental adjacencies and other factors were not properly prioritized and weighted, and that the evaluation criteria needed to be modified accordingly. Once VA and its design team agreed on the revised criteria, the concepts were reevaluated against the modified criteria; the design team also developed the new Atrium concept which was evaluated against the modified criteria. The Wave (right), Interlock, and Campus (lower left) concepts were all discarded and the new Atrium concept was ultimately selected as the preferred concept in late 2013. Its design and layout was determined to be more functional and efficient than the other concepts.

2.3.5 Alternatives not within Scope

Several scoping comments and comments on the Draft EIS were received recommending that the VA-owned Brownsboro Site not be developed as a replacement VAMC, but instead be used as an expansion area for the Zachary Taylor National Cemetery. This would not meet the purpose of and need for action to address the inadequacy of the conditions and configuration at the existing Louisville VAMC facilities, which have reached the end of their serviceable lives and are inadequate to effectively and efficiently
meet the expanding needs of VA’s health care mission and VBA services in the region. This suggestion was not further evaluated in this EIS.

Several scoping and Draft EIS comments also suggested that other variations in new and existing facility use to provide health care services to Veterans, including the option that Veterans should be able to go to any doctor or hospital they wish and carry a Veteran insurance card that directly billed to the VA. The nationwide Veterans Choice Program (www.va.gov/opa/choiceact/) has made such an option available to Veterans who choose to receive care from community providers. However, this program has not replaced the VA system of Veterans health care facilities. At this time, such a program does not meet the purpose of and need for the current project.

In addition, as noted previously, VA decisions related to how to configure and what services to provide Veterans are based on their own expertise and not subject to NEPA. The scope of this EIS is to address potential impacts from WHERE these services would be provided. Also, the PEA already addressed whether to build a new VAMC, and this EIS is tiering from that decision which has already been made.

2.4 Comparison of Environmental Impacts of Alternatives

Table 2-5, beginning on the following page, summarizes the potential environmental impacts of the evaluated alternatives by environmental resource based on the analysis presented in Chapter 4 of this EIS.

2.5 VA’s Preferred Alternative

VA’s preferred alternative is Alternative A, which would construct and operate a new replacement medical center and VBA regional office at the Brownsboro Site in Louisville, Kentucky. Alternative A would meet the purpose of and need for action. The Brownsboro Site is considered to be a better location given its easy interstate access, and its more central location to downtown Louisville, including closer proximity to the partner hospital at the University of Louisville. Site acquisition and development challenges were also minimized given a single owner and single parcel of land that could accommodate the entire facility.

2.6 Environmentally Preferable Alternative

Based on the potential environmental impacts identified in Chapter 4 and the available mitigation identified in Chapter 5, the environmentally preferable alternative is Alternative C, No Action. Alternative C would have negligible or no effects to any of the resource evaluated in this EIS, whereas effects for Alternatives A and B range from none to major, depending on the resource. Table 2-5 includes a summary of impacts by alternative; see also detailed discussions in Chapter 4. However, Alternative C does not meet the purpose of and need for action.
Table 2-5. Summary of Impact Analysis.

<table>
<thead>
<tr>
<th>Resource / Issue</th>
<th>A – Replacement VAMC at Brownsboro Site</th>
<th>B – Replacement VAMC at St. Joseph Site</th>
<th>C – No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets purpose of and need for action</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>During early stages of construction, presence of heavy equipment and unfinished stages of site preparation and building construction would temporarily impact visual quality. Over the long term, the VAMC would create a noticeable contrast to the existing landscape, obstruct or detract from what some observers would consider a scenic view, or introduce visual elements that some observers would consider out of scale or character with the surrounding area. The extent of these adverse effects would range from negligible to major, depending on the observer. Visual effects to the residential developments closest to the site (e.g., Crossgate, Graymoor-Devondale) would be considered potentially significant.</td>
<td>Impacts similar to Alternative A. Visual effects to the residential developments closest to the site likely to be considered potentially significant.</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Construction and operation emissions would comply with all permit requirements and regulations. Particulate emissions during construction are below the de minimis threshold level. Overall, air quality impacts would be negligible. Potential for adverse health effects from</td>
<td>Impacts similar to Alternative A, but impacts on adjacent neighborhoods may be slightly less given the larger buffer area between residences and the proposed VAMC (i.e., more than 500 feet).</td>
<td>No construction impacts at Zorn Avenue site. Operation impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>increased vehicular traffic air emissions on residents living immediately adjacent (e.g., within 500 feet) to the VAMC, especially in combination with their proximity to existing roads and highways that already experience heavy traffic volumes. They are not expected to be significant, however.</td>
<td>No adverse effects to archaeological features or historic properties. VA's plans for disposition of the potentially NRHP-eligible existing Zorn Avenue VAMC have not been determined and would be the subject of a future reutilization feasibility study, NEPA analysis, and consultation under Section 106 of the National Historic Preservation Act, as appropriate.</td>
<td>No adverse effects to archaeological features or historic properties.</td>
</tr>
<tr>
<td>Geology and Construction-related impacts to geology and</td>
<td>Impacts similar to Alternative A.</td>
<td>No impacts at Zorn Avenue</td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Soils</td>
<td>Soils would be minor and short-term. The presence of karst features has been studied through extensive geotechnical investigations which would be factored into project design and would not be associated with an adverse effect. In addition, a geotechnical engineer would be present during site work to observe conditions and determine whether mitigation is needed. Karst risk has been acceptable for previous site development for the adjacent land owners. Need for blasting is not anticipated at Brownsboro but if required, adherence to vibration standards and requirements of the Kentucky Revised Statute 351.330 for blasting operations, advance notification of adjacent city governments and immediately adjacent residents, and pre-blast survey (if determined necessary) would avoid damage to nearby buildings and houses. Contractor compliance with applicable federal and state laws for blasting and safety would be enforced by U.S. Army Corps of Engineers who would oversee construction. Loss of prime farmland soil would not be significant. Erosion and sedimentation impacts would be minimized through implementing construction best management practices.</td>
<td>No known or suspected karst features have been identified from the test borings done at the St. Joseph site and karst potential appears to be regionally lower at St. Joseph than Brownsboro. It is not yet known whether blasting would be required at St. Joseph since less is known about the underlying rock strata, but if conducted, the same precautions during construction would be taken as at Brownsboro.</td>
<td>Location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>practices and conforming to permit requirements. No operation-related impacts would occur.</td>
<td>Impacts similar to Alternative A. Protection of stormwater and groundwater resources would be similar to that described for Alternative A and would result in similar impacts. Both sites would have to meet the same requirements, although the larger St. Joseph site could more easily allow the construction of retention areas, etc.</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
<td></td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>Potential construction impacts to surface water quality and groundwater are predicted to be localized and negligible with implementation of the required control and protection plans. Site wide stormwater management would meet predevelopment discharge rates for the 2-, 10-, 25-, and 100-year storm events in accordance with the Metropolitan Sewer District (MSD) Design Manual and should therefore have minimal adverse effects on the hydrology of the project site and adjacent properties, surface water quality, and the rate of groundwater recharge. VA proposes to control storm water runoff through the use of surface and subsurface detention systems that would maintain the post-construction stormwater discharge rate to pre-development conditions. Because the proposed site is located in an area with potential for karst development where groundwater is susceptible to direct contamination from surface activities, VA would prepare a groundwater protection plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>(GPP) in accordance with Kentucky Administrative Regulation (Title 40, Chapter 5:037) before drilling any geothermal bores. VA has committed to not adversely impacting the adjacent properties and would improve the drainage along its east property line as required by MSD.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildlife and Habitat</td>
<td>Negligible impact to common wildlife species (displacement of individuals). Nesting bird survey would identify migratory birds to be protected if construction begins between April and July. To avoid impacts to roosting northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any northern long-eared bats from the site. No other listed species or critical habitat onsite. VA completed northern long-eared bat 4(d) rule streamlined consultation and FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to this project is not prohibited under the final 4(d) rule (50</td>
<td>Negligible impact to common wildlife species (displacement of individuals). Nesting bird survey would identify migratory birds to be protected if construction begins between April and July. To avoid impacts to roosting Indiana or northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any northern long-eared bats from the site. No other listed species or critical habitat onsite. VA completed northern long-eared bat 4(d) rule streamlined consultation and FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to this project is not prohibited under the final 4(d) rule (50</td>
<td>No impacts at Zorn Avenue location. Impacts at Brownsboro and St. Joseph would be similar to Alternatives A and B due to development of sites by others.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>project is not prohibited under the final 4(d) rule (50 CFR §17.40(o))</td>
<td>Land disturbance for construction would be preceded by a site survey for running buffalo clover and any appropriate mitigation in consultation with the U.S. Fish and Wildlife Service, including a management plan to avoid impact during operations. No other listed species or critical habitat onsite.</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>Construction-related noise and vibration impacts would be adverse, short-term, and potentially moderate in magnitude (approaching EPA threshold levels), depending on the receptor type and proximity to the project location. Operation-related noise impacts would be minor. Because Brownsboro is a relatively confined site, surrounding communities may experience adverse noise and vibration impacts potentially moderate in magnitude, although short-term in nature. VA would conduct a community outreach effort to provide early information and schedules on construction activities and expected noise levels and durations. Blasting activities not anticipated to be needed at Brownsboro.</td>
<td>Impacts similar to Alternative A, although slightly less on adjacent residents since St. Joseph is a larger site with a larger buffer area between project and nearest residences. Not yet known whether blasting would be needed but if so, would take same precautions as described for Brownsboro (see also summary of impacts in geology)</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in construction-related impacts similar to Alternatives A and B, while operation-related impacts would depend on the specific type of development.</td>
</tr>
<tr>
<td>Land Use</td>
<td>Temporary disturbances to access to</td>
<td>Temporary disturbances to access to</td>
<td>No impacts at Zorn Avenue</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Adjacent Land Uses</td>
<td>adjacent land uses could occur during construction. The conceptual design for building setbacks, perimeter fence, and landscape buffer would be compatible with the existing zoning. The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations in existing zoning, and would therefore be an adverse impact to adjacent land use.</td>
<td>adjacent land uses could occur during construction. The conceptual design for building setbacks, perimeter fence, and landscape buffer would be compatible with the existing zoning. The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations of the zoning of the northeastern part of the site, and would therefore be considered an adverse impact to the adjacent residential land use.</td>
<td>location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B within existing or similar zoning requirements.</td>
</tr>
<tr>
<td>Floodplains and Wetlands</td>
<td>No impacts</td>
<td>No impacts to floodplains. Small onsite wetland areas would require coordination with U.S. Army Corps of Engineers to ensure no impacts or mitigate impacts.</td>
<td>No impacts at Zorn Avenue location. Development of Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>Short-term beneficial effects to local economy during construction and operation. No long-term adverse effects to property values or local crime rates are expected, although property values of immediately adjacent neighborhood (Crossgate) could be adversely affected given the change in visual character, as would the potential impacts from noise, traffic and air quality.</td>
<td>Impacts similar to Alternative A.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Community Services</td>
<td>Negligible impacts during construction, no impacts from operation.</td>
<td>Impacts similar to Alternative A.</td>
<td>No impacts at Zorn Avenue location. Development of</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Solid Waste and Hazardous Materials</td>
<td>Short-term negligible impact due to increased presence and use of petroleum and hazardous substances during construction, minimized through best management practices and regulatory compliance. Negligible adverse long-term impacts during operation as solid waste and hazardous materials would be managed in accordance with VA policies and federal, state, and local regulations. Brownsboro Road would be designated as the primary site entry and exit for waste transport during construction. Given the close proximity of local residents to the proposed site, VA would further assist residents and city officials with proper traffic routing through the use of appropriate temporary signage and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers.</td>
<td>Impacts similar to Alternative A. contractor to assist residents and city officials with proper directing of traffic through the use of appropriate temporary signage, and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers.</td>
<td>Brownsboro and St. Joseph sites by others would result in impacts similar to Alternatives A and B.</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>Construction contractors would provide a plan to manage site use, including limited onsite parking during the initial stages of construction and offsite parking and storage</td>
<td>The start of construction would create the possible need for the addition of a signalized intersection where one does not currently exist (at the proposed VAMC site).</td>
<td>Negligible impacts. Traffic at the existing VAMC at the Zorn Avenue location would increase over time commensurate with projected future background.</td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>as construction progresses; the approved plan may also mitigate impacts to local traffic to the extent it decreases the number of construction worker vehicles commuting to the site. Operation of the proposed campus is anticipated to increase the Average Daily Traffic (ADT) on Old Brownsboro Road, between the ramp split and US 42, by more than 20 percent; ADT is not expected to increase by more than 20 percent on any other segment of roadway in the corridor, however. Travel times and intersection delays under Alternative A would be comparable for a similar mixed use development that would be anticipated to be built at the Brownsboro Site. Travel times and intersection delays would be significantly improved by the planned construction of the single-point urban interchange (SPUI). Assuming the SPUI is constructed at the US 42 interchange with I-264, the project would not significantly contribute to the degradation of levels of service at the intersection of US 42 and KY 22 (Brownsboro Road at Northfield Drive), entrance on Factory Lane). There are overall major travel time impacts under Alternative B compared to future conditions without the VAMC, particularly for VAMC traffic exiting the site and going to the I-265 interchange at LaGrange Road.</td>
<td>traffic growth on Zorn Avenue.</td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>which operates at a LOS E in the AM peak hour and LOS F in the PM peak hour both with the VAMC or with an alternative mixed-use development. Without the new SPUI interchange construction, the intersection would operate at LOS F in both the AM and PM peak periods with either the VA or alternative mixed-use development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With interchange improvements at Watterson Expressway (I-264) and US 42, the levels of service would be acceptable (LOS C) at the entrance to and exit from the VAMC campus (KY 22 at I-264 eastbound ramp split).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A qualitative analysis comparing just the total number of cars on the road (Design Hourly Volume) between the proposed VAMC and a no build/development scenario at Brownsboro (but accounting for background growth), show a significant increase in cars during the morning and evening peak from the VAMC in year 2025. The highest increase would be for the segment of Old Brownsboro Road between US 42 and the proposed site because this would be the single access point for the VAMC campus. However, the overall traffic congestion/delays associated with the projected number of cars would be expected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource / Issue</td>
<td>A – Replacement VAMC at Brownsboro Site</td>
<td>B – Replacement VAMC at St. Joseph Site</td>
<td>C – No Action</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>to be significantly reduced with construction of the new SPUI interchange.</td>
<td>Sufficient capacity exists and connections can be developed without significant environmental impacts for utility services to be provided to the site. Although LG&E would construct a new substation to provide primary electrical service required for the hospital. Construction and operation of a new substation would result in permanent conversion to urban/industrial land. Overall impacts would be expected to be minor although visual effects (including 24-hour lighting) and noise emissions could adversely affect any nearby residences. The new substation would have the added benefit of increasing capacity and reliability to the surrounding areas.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Utilities</td>
<td>Sufficient capacity exists and connections can be developed without significant environmental impacts for utility services to be provided to the site.</td>
<td>Sufficient capacity exists and connections can be developed without significant environmental impacts for utility services to be provided to the site.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>No disproportionate environmental, health or safety impacts to minority or low income populations within the service area or within a 3-mile radius of the site where project impacts most likely to occur.</td>
<td>No disproportionate environmental, health or safety impacts to minority or low income populations within the service area or within a 3-mile radius of the site where project impacts most likely to occur.</td>
<td>No impacts.</td>
</tr>
</tbody>
</table>
3.0 AFFECTED ENVIRONMENT

Each section of this chapter addresses one of the 15 environmental resources or issues for which impacts are assessed in this environmental impact statement (EIS):

- Aesthetics
- Air quality
- Cultural resources and historic properties
- Geology and soils
- Hydrology and water quality
- Wildlife and habitat
- Noise
- Land use
- Floodplains and wetlands
- Socioeconomics
- Community services
- Solid waste and hazardous materials
- Transportation and parking
- Utilities
- Environmental justice

The regulatory and policy framework relevant to each resource is summarized, and the existing conditions are described; these discussions provide a current baseline for analyzing potential impacts. The last subsection of this chapter lists the projects and activities ongoing or proposed in the area near each alternative, regardless of who is implementing them, that could contribute to cumulative impacts with the Department of Veterans Affairs’ (VA’s) proposal.
This page intentionally left blank.
3.1 Aesthetics

Aesthetics include the physical (natural and manmade) and biological features of the landscape that contribute to the visual character or scenic quality of an area. Scenic quality is a measure of the visual appeal of the landscape, which is subjective and varies among observers.

3.1.1 Regulatory and Policy Framework

There are no federal standards relating to aesthetics or visual resources that apply to Department of Veterans Affairs (VA) actions. Consideration is given to local codes and ordinances even if VA is not legally required to comply with them.

3.1.1.1 VA Guidance

The VA Site Development Design Manual (VA 2013) addresses a wide range of issues, including the aesthetic value of incorporating natural and manmade landscapes in the planning and designing of VA facilities. This guidance addresses the development and use of landscape plans, orientation and layout of building functions, and management of stormwater to create aesthetically pleasing facilities.

3.1.1.2 Local Design Standards

The Louisville-Jefferson County Land Development Code (LMG 2006) compiles the regulations that implement the goals and objectives within the Cornerstone 2020 Comprehensive Plan (LJCPC 2000). The Land Development Code contains standards related to maintaining and improving the aesthetic qualities of different land use, building and site design, landscaping, and signage. The standards for building setbacks and heights, landscaping, exterior lighting, and building facades contribute to aesthetic quality.

3.1.2 Current Conditions

3.1.2.1 Brownsboro Site

The Brownsboro Site is a vacant parcel of 34.9 acres within a suburban area. Features surrounding the site that contribute to the visual character and scenic quality of the area include the Watterson Expressway (Interstate 264 [I-264]), commercial and office buildings, and power poles with overhead transmission wires.

The Brownsboro Site is visible to drivers northbound on Watterson Expressway and drivers exiting east onto Brownsboro Road at U.S. Highway 42 and Kentucky Route 22, occupants of the office building off the northeast corner of the site, and users of the three to five retail and commercial business on the north side of Brownsboro Road directly across from the site. The site is also visible to the residents located along the north and south site boundaries, with visibility varying based on the density of the trees lining the site and the landscaping maintained by the residents.

The short segment (approximately 675 feet) of Brownsboro Road along the north boundary of the site is part of a scenic corridor designated by the Cornerstone 2020 Comprehensive Plan. Commercial uses and power poles with overhead transmission wires front this segment of Brownsboro Road. Approximately half of the segment has been cut off from the site by the slip ramp exit from Watterson Expressway.

Sources of nighttime light in the area surrounding the Brownsboro Site include security lights for the parking lot and office building off the northeast corner of the site and businesses on the north side of
Brownsboro Road, along with the street lights along Brownsboro Road, the Watterson Expressway, and at intersections.

3.1.2.2 St. Joseph Site

The St. Joseph Site is a vacant parcel of approximately 100 acres within a suburban area. Features surrounding the site that contribute to the visual character and scenic quality of the area include the Gene Snyder Freeway (I-265), multiple-family residential units, a municipal water tower, wooded areas, agricultural fields and pasture, natural drainages and wetlands, and power poles with overhead transmission wires.

The St. Joseph Site is visible to drivers on the Gene Snyder Freeway (west of site) and on Factory Lane (north of site), and occupants on the upper floors of the medical building (southwest of site) located west of the freeway. The site is also visible to the residents of the multiple-family units located adjacent to the west and east site boundaries, with visibility varying based on the density of the trees along the edge of the site.

Sources of nighttime light in the area surrounding the St. Joseph Site include security lights for the parking lot and medical building west of the site and for the residential units on the west and east side of the site, along with the street lights along Gene Snyder Freeway.

3.1.2.3 Existing Zorn Avenue VAMC

The Robley Rex VA Medical Center (VAMC) campus on Zorn Avenue is a parcel of approximately 47 acres within a suburban area. The VAMC sits atop a bluff overlooking the Ohio River to the north. Features on and surrounding the site that contribute to the visual character and scenic quality of the area include the VAMC buildings, the I-71 freeway, single- and multiple-family residential units, a water tower, wooded draws and drainages, and power poles with overhead transmission wires.

The Zorn Avenue site has limited visibility to drivers on I-71 (north of the site) or Zorn Avenue (east of the site). The hospital building and water tower are visible to the residents of the single- and multiple-family units located to the west and east, with visibility varying based on the density of the trees and the elevation.

Sources of nighttime light in the area surrounding the Zorn Avenue VAMC include security lights on the VAMC campus and street lights along I-71 and Zorn Avenue.
3.2 Air Quality

This section describes the air quality regulations applicable to the proposed action and the regional air quality in the Louisville metropolitan area. The region of influence for the evaluation of air quality impacts includes the project site and immediate surroundings for all three alternative site locations (Brownsboro Road, Factory Lane and Zorn Avenue), extending to the project county and neighboring counties for regulatory compliance.

3.2.1 Regulatory and Policy Framework

3.2.1.1 National Ambient Air Quality Standards

As required by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for selected criteria pollutants considered harmful to public health and the environment: ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter (PM), and lead (40 Code of Federal Regulations [CFR] Part 50), with an averaging time and data form for determining compliance specific to each standard. Primary NAAQS are limits set to protect public health, including the health of “sensitive” populations such as asthmatics, children, and the elderly. Secondary NAAQS protect public welfare, including protection against visibility impairment and damage to animals, crops, vegetation, and buildings.

Based upon ambient air quality monitoring data, EPA designates areas within each state as one of the following:

- In attainment for those NAAQS that are being met
- In non-attainment for any NAAQS that are being exceeded
- In maintenance if the area was reclassified from non-attainment to attainment and is therefore subject to an EPA-approved maintenance plan
- Unclassified if no determination has been made

For areas of non-attainment, a federally enforceable state implementation plan is implemented with the goal of achieving attainment.

“General conformity” requirements apply to all federal actions (EPA 2015a). The purpose of the General Conformity Rule is to ensure that:

- Federal activities do not cause or contribute to a new violation of a NAAQS
- Actions do not cause additional or worsen existing violations of or contribute to new violations of the NAAQS
- Attainment of the NAAQSs is not delayed

The general conformity regulations (40 CFR 93 Subpart B) establish de minimis thresholds for criteria pollutants and precursors. A “conformity determination” is required for each criteria pollutant or precursor where the total of direct and indirect emissions of the criteria pollutant or precursor in a nonattainment or maintenance area caused by a federal action would equal or exceed any of the de minimis thresholds (40 CFR 93.153(b)).
3.2.1.2 Clean Air Act Title V Operating Permit Requirements

Title V of the Clean Air Act regulates emissions of 188 specific hazardous air pollutants (HAPs) (40 CFR Part 70). Sources that meet the definition of a “major source” of either the criteria pollutants (regulated by the NAAQS) or HAPs must apply for and obtain a Title V operating permit. For HAPs, a major source is one that has the potential to emit more than 10 tons per year of any individual HAP, or 25 tons per year of any combination of HAPs. For criteria pollutants, the definition of a major source depends on the region’s attainment status: in an attainment area, a major source is one that has a potential to emit more than 100 tons per year of any criteria pollutant, with more restricted levels at various classifications of non-attainment for some criteria pollutants (40 CFR 70.2).

The Louisville Metro Air Pollution Control District (APCD) issued a Title V permit for the existing Louisville VA Medical Center (VAMC), Permit No. 29112-12-O/C (APCD 2012). Units covered by the Title V permit are described in Table 3.2-1.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Maximum Operating Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Three emergency generators</td>
<td>E1 – 400 kW/500 hp, 100 hours per year (non-emergency)</td>
</tr>
<tr>
<td></td>
<td>E1 – Caterpillar/3406</td>
<td>E2 – 600 kW/900 hp, 100 hours per year (non-emergency)</td>
</tr>
<tr>
<td></td>
<td>E2 – Cummins/DFGB-5670308</td>
<td>E3 – 668 kW/896 hp, 100 hours per year (non-emergency)</td>
</tr>
<tr>
<td>U2</td>
<td>Three boilers</td>
<td>14.33 million BTU per hour heat input</td>
</tr>
<tr>
<td></td>
<td>E4 – Johnston/PFTA350-4LG2005</td>
<td>Natural gas fired, #2 fuel oil backup</td>
</tr>
<tr>
<td>U3</td>
<td>Refueling system</td>
<td>IA1 – 10,000-gallon storage</td>
</tr>
<tr>
<td></td>
<td>IA1 – 10,000-gallon fuel storage tank</td>
<td>IA2 – E-85 refueling operation</td>
</tr>
<tr>
<td></td>
<td>IA2 – 13.7 gallons per hour</td>
<td></td>
</tr>
</tbody>
</table>

Key: BTU = British thermal units; hp = horsepower; kW = kilowatt.
Source: APCD 2012.

3.2.1.3 New Source Review

The New Source Review (NSR) permitting program, under Title I of the Clean Air Act, is a preconstruction permitting program that assures that air quality is not degraded by new stationary emission sources or modified old sources. There are three types of permits issued under this program:

- “Prevention of Significant Deterioration” NSR permits are required for new major sources or a major source making a major modification in an attainment area or unclassified area.
- Nonattainment NSR permits are required for new major sources or major sources making a major modification in a nonattainment area.
- Minor source NSR permits are for new construction or modifications with emissions that do not meet the thresholds of major sources.

3.2.1.4 State and Local Regulations and Coordination

The Louisville Metro APCD implements the federal Clean Air Act in the Louisville metropolitan area and works in partnership with EPA, the Kentucky Department for Environmental Protection – Division for Air Quality, and the Indiana Department of Environmental Management. States may establish air quality standards that are more stringent than the federal standards (40 CFR 50.2); Kentucky has adopted the federal standards. Air quality regulations are included in Kentucky Administrative Regulations, Title 401, Energy and Environment Cabinet – Department for Environmental Protection.
In addition, two potentially relevant state regulations related to fugitive emissions and open burning identified by the Kentucky Department of Environmental Protection are summarized below.

- Kentucky Division for Air Quality Regulation 401 KAR 63:010 Fugitive Emissions states that no person shall cause, suffer, or allow any material to be handled, processed, transported, or stored without taking reasonable precaution to prevent particulate matter from becoming airborne. Additional requirements include the covering of open bodied trucks, operating outside the work area transporting materials likely to become airborne, and that no one shall allow earth or other material being transported by truck or earth moving equipment to be deposited onto a paved street or roadway.

- Kentucky Division of Air Quality Regulation 401 KAR 63:005 states that open burning is prohibited, where open burning is defined as the burning of any matter in such a manner that the products of combustion resulting from the burning are emitted directly into the outdoor atmosphere without passing through a stack or chimney.

3.2.2 Current Conditions

3.2.2.1 Regional Climate

The climate of the Louisville region is classified as humid subtropical according to the Koppen climate system and is characterized as mild, with no dry season, and hot summers (NWS 2015). Average minimum and maximum temperatures measured at the Louisville International Airport are 26.8 and 43.0 degrees Fahrenheit (°F) in January and 69.9 and 88.7 °F in July. The average annual precipitation is 44.9 inches. Monthly precipitation is generally constant and non-seasonal, ranging from 3.05 to 5.27 inches, with a low annual average of 12.5 inches of snowfall occurring from October to April (NCDC 2015). Prevailing winds are from the south, with average wind speeds less than 10 miles per hour (Weather 2015).

3.2.2.2 Regional Attainment Status for National Ambient Air Quality Standards

All three alternative locations are within Jefferson County, Kentucky. The St. Joseph Site is near Jefferson County’s border with Oldham and Shelby Counties. Jefferson County was previously designated as a non-attainment area for PM$_{2.5}$ (PM less than 2.5 micrometers in diameter). EPA subsequently determined that the area was in attainment with the 1997 PM$_{2.5}$ NAAQS by the attainment date of April 5, 2010 (Federal Register 76(173):55544, September 7, 2011).

EPA continues to list Jefferson County as a nonattainment area for PM$_{2.5}$ under the 1997 standard (EPA 2015b). The Kentucky Energy and Environment Cabinet submitted a revised state implementation plan and maintenance plan to EPA to designate Jefferson County as in attainment for PM$_{2.5}$ in 2012 (EEC 2012). EPA lowered the standard in 2013, and the state again recommended the designation of Jefferson County as attainment/unclassified with the lower PM$_{2.5}$ standard (EEC 2013). The state provided additional data and again recommended designation of Jefferson County as in attainment in 2015 (EEC 2015). EPA has not yet acted on the recommendations. EPA Region IV reconfirmed in its comment letter on the Draft EIS (EPA 2016), that EPA continues to designate the Louisville area as nonattainment for PM$_{2.5}$.

A portion of southwestern Jefferson County (outside of the project areas) is currently a non-attainment area for sulfur dioxide (EPA 2015b).
Chapter 3. Affected Environment

3.2.2.3 Emission Sources

Regional Sources

The National Emission Inventory provides estimates of criteria and hazardous air pollutant emissions from all air emissions sources. The latest available National Emissions Inventory is from 2014 (available in three-year cycles) (EPA 2017). Economic sectors emitting more than 100 tons per year of a pollutant in Jefferson County are shown in Table 3.2.2.

Louisville VAMC Facility Emissions

Fuel combustion at the Louisville VAMC produces air emissions. Specifically, three boiler units (primarily fed with natural gas), three emergency generators, and a refueling system are permitted under Title V Air Quality Permit Number 29112-12-O/C (APCD 2012).

Operation and maintenance vehicles supporting the VAMC also produce air emissions, including total suspended particulate and fuel combustion by-products. These mobile sources are not individually permitted, and their operation is not continuous. Proper equipment maintenance prevents unacceptable emissions from these mobile sources.

Greenhouse gas (GHG) emissions attributable to existing Robley Rex VAMC operations can be estimated using accounting tools developed by the GHG Protocol. Three scopes of GHG emissions are defined as follows (WRI 2004):

- **Scope 1**: Direct GHG Emissions – GHG emissions from sources that are owned or controlled by the reporting entity, including fuel consumption and operation of fleet vehicles.
- **Scope 2**: Electricity Indirect GHG Emissions – GHG emissions from the generation of purchased electricity consumed by the reporting entity.
- **Scope 3**: Other Indirect GHG Emissions – GHG emissions from activities of the reporting entity but from sources not owned or controlled by the reporting entity, including employee commuting, use of services, and waste transportation and disposal.

Scope 1: Direct GHG emissions from operation of the existing Robley Rex VAMC predominantly include the consumption of natural gas and #2 fuel oil. In fiscal year (FY) 2015, VAMC operations consumed 51,847,200 cubic feet of natural gas and 22,654 gallons of #2 fuel oil (VA 2015). Operation of fleet vehicles for landscaping and facility maintenance also account for GHG emissions; however, such GHG emissions were assumed to be negligible when compared to GHG emissions from natural gas and #2 fuel oil consumption and were not included in the facility estimate.

The Scope 1 GHG emissions calculation tool developed for the service sector by the GHG Protocol was used to estimate direct GHG emissions (WRI 2016). FY 2015 Scope 1 GHG emissions from existing Robley Rex VAMC operations are calculated at 3,006 metric tons of carbon dioxide equivalents (t CO₂ eq) (LEI 2016a).

Scope 2: In FY 2015, VAMC operations consumed 17,596,715 kilowatt-hours of electricity supplied by Louisville Gas and Electric. The Scope 2 GHG emissions calculation tool developed for the service sector by the GHG Protocol was used to estimate electricity indirect GHG emissions (WRI 2016). FY 2015 Scope 2 GHG emissions from existing Robley Rex VAMC operations are calculated at 14,521 t CO₂ eq (LEI 2016b).
Table 3.2-2. 2014 National Emissions Inventory Data.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Economic Sectors Emitting More than 100 Tons per Year in Jefferson County (aggregated for all sources in county)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>bulk gasoline terminals, natural gas combustion, gas stations, chemical manufacture and storage, mobile sources</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>biogenics (vegetation and soil), commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, chemical manufacture and storage, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Ammonia</td>
<td>fertilizer application, livestock waste, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing and storage, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Benzene</td>
<td>bulk gasoline terminals, commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, gas stations, cement manufacturing, chemical manufacturing and storage, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>wildfire, mobile sources</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>biogenics (vegetation and soil), commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, chemical manufacture and storage, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>bulk gasoline terminals, commercial cooking, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing and storage, metal processing, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>chemical manufacturing and storage, solvent use, waste disposal</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>biogenics (vegetation and soil), commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing and storage, chemical manufacturing, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Hexane</td>
<td>bulk gasoline terminals, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, gas stations, cement manufacturing, chemical manufacturing and storage, chemical manufacturing, solvent use, waste disposal</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>electric generation, industrial boilers, commercial fuel combustion, cement manufacturing, chemical manufacturing and storage, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Methane</td>
<td>wildfire, mobile sources</td>
</tr>
<tr>
<td>Methanol</td>
<td>biogenics (vegetation and soil), wildfire, industrial boilers, chemical manufacturing and storage, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>biogenics (vegetation and soil), wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing and storage, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>mobile sources</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>agriculture, commercial cooking, construction, dust from paved roads, dust from unpaved roads, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing and storage, mining, petroleum refineries, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>agriculture, commercial cooking, construction, dust from paved roads, dust from unpaved roads, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing and storage, mining, petroleum refineries, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, cement manufacturing, chemical manufacturing, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Toluene</td>
<td>bulk gasoline terminals, commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, gas stations, cement manufacturing, chemical manufacturing and storage, metal processing, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Economic Sectors Emitting More than 100 Tons per Year in Jefferson County (aggregated for all sources in county)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Volatile organic compounds</td>
<td>biogenics (vegetation and soil), bulk gasoline terminals, commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, gas stations, cement manufacturing, chemical manufacturing and storage, metal processing, pulp and paper, mobile sources, solvent use, waste disposal</td>
</tr>
<tr>
<td>Xylenes (mixed isomers)</td>
<td>bulk gasoline terminals, commercial cooking, wildfire, electric generation, industrial boilers, commercial and residential fuel combustion, gas stations, cement manufacturing, chemical manufacturing and storage, metal processing, mobile sources, solvent use, waste disposal</td>
</tr>
</tbody>
</table>

Scope 3: Other indirect GHG emissions predominantly include vehicular emissions from commuting VAMC employees and vehicular emissions from patient use of VAMC services. Transportation and ultimate disposal of VAMC-generated wastes were assumed to be negligible when compared to GHG emissions from other transportation sources and were not included in the facility estimate.

The Scope 3 GHG emissions calculation tool developed for the service sector by the GHG Protocol was used to estimate other indirect GHG emissions (WRI 2016), using the following assumptions:

- **Employee Transportation** – 1,763 full-time equivalent employees, 1 passenger car per employee, 250 work days per year, 20-mile round trip commuting distance.
- **Patient Transportation** – 610,000 annual visits, 1 passenger car per patient visit, 20-mile round trip commuting distance.

FY 2015 Scope 3 GHG emissions from existing Robley Rex VAMC operations are calculated at 8,286 t CO$_2$ eq (LEI 2016c).

The total FY 2015 GHG emissions from existing Robley Rex VAMC operations are estimated at 25,813 t CO$_2$ eq, or approximately 0.016 percent of the total GHG emissions for the state of Kentucky (CAIT 2016). Of the sources of GHG emissions inventoried and estimated, the generation of electricity purchased and consumed by the existing Robley Rex VAMC results in the most GHG emissions.
3.3 Cultural Resources

Cultural resources include both historic and prehistoric archaeological resources, as well as historic structures in the built environment.

3.3.1 Regulatory and Policy Framework

For purposes of analysis under the National Environmental Policy Act (NEPA), cultural resources encompass “historic properties” as defined in the National Historic Preservation Act (NHPA), “archaeological resources” as defined in the Archaeological Resources Protection Act, and “cultural items” as defined in the Native American Graves Protection and Repatriation Act. NEPA provides an overarching consideration of the human environment to address these cultural, historic, and archaeological resources, properties, and items (collectively referred to as “cultural resources” in this EIS).

Section 106 of the NHPA requires federal agencies to consider the effects of an undertaking on historic properties. “Historic properties” defined by the NHPA are any prehistoric or historic district, site, building, structure, or object included in, or eligible for inclusion in, the NRHP. A historic property may include artifacts, records, and remains related to and located within the property, and properties of traditional religious and cultural importance to a Native American tribe that meet the NRHP criteria.

3.3.2 Current Conditions

3.3.2.1 Brownsboro Site

The project area is located in northeastern Jefferson County, approximately 3.6 miles south of where Harrods Creek meets the Ohio River. The project area itself is a former farmstead, currently an empty field with no above-ground historic resources. Modern development surrounds the project area, from busy roads and highways (including Brownsboro Road and US 42 to the north and I-264 to the west) to shopping centers and subdivisions. Historic resources in the vicinity include several houses and other remnants of early nineteenth century farmsteads, now engulfed by mid-twentieth century residential, commercial, and ecclesiastical development.

In February 2012, the Brownsboro Road site was surveyed in its entirety by a pedestrian survey supplemented with screened shovel testing (the report referenced a 34.2-acre area) (Eberwine et al. 2012a). The purpose of the survey was to identify and evaluate any archaeological resources that might be adversely affected by the proposed undertaking. Shovel tests were excavated every 20 meters in transects spaced 20 meters apart. A total of 369 shovel tests were excavated. One new archaeological site, 15JF809, was documented during the survey.

Site 15JF809 was at the location of a historic farm/residence and a prehistoric open habitation without mounds. The Site consisted of a low density scatter (30 artifacts) of early twentieth century historic artifacts and temporally undiagnostic prehistoric artifacts. Included in the prehistoric artifacts was a Kirk Corner-Notched projectile point which dates from the Early Archaic period. The historic cultural material dated from the early twentieth century was found in the vicinity of a previously recorded historic structure that has been razed (Structure JF 486). The building was recorded as an early twentieth century residence. Shovel tests revealed prehistoric artifacts (one flake and one hafted biface) and historic materials (domestic refuse and architectural debris). No intact cultural deposits were found within the limits of Site 15JF809, demonstrating that the site no longer possesses integrity; and the paucity of artifacts and absence of cultural features indicates that the site has no research potential. Therefore, the site was recommended as not eligible for listing on the NRHP because it does not possess those qualities of
significance as defined by the National Register of Historic Places (NRHP) Criteria for Evaluation (36 CFT 60.4[a-d]). Furthermore, previously recorded Historic Standing Structure JF486 has been razed and is no longer extant.

A historic resource survey in April 2014 documented above-ground resources 50 years of age or older located in or within 1,000-foot buffer of the Brownsboro Site (Martinolich 2015), defined as the area of potential effect through consultation with the Kentucky Heritage Council and the Metro Louisville Historic Preservation Officer. Fifteen cultural historic sites were identified within this area: two previously surveyed sites (Sites 3 and 6 [JF 487 and 394]), eight previously unrecorded sites (Sites 1, 2, 4, 5 and 7-10 [JF 2761–2768]), and five previously unrecorded neighborhoods (N1-N5 [JF 028–032]). One previously recorded site within the project area was found to be demolished (JF 486 as noted above). The individually recorded sites were two nineteenth century residences, two mid-twentieth century churches, a Ranch house, and five mid-twentieth century commercial buildings. The neighborhoods are all mid-twentieth century subdivisions featuring a combination of Ranch and Neocolonial style residences.

For a property to be eligible for listing in the NRHP, it must be at least 50 years old and possess both historic significance and integrity. Significance may be found in three aspects of American history recognized by these NRHP criteria:

A. association with historic events or activities,
B. association with important persons, or
C. distinctive design or physical characteristics.

A fourth criterion, D, which is the potential to yield important information in prehistory or history, is typically not used for above-ground resources. A property must meet at least one of the criteria for listing. Integrity must also be evident through historic qualities, including location, design, setting, materials, workmanship, feeling, and association.

Fourteen of the cultural historic sites (Sites JF 2761–2768, and neighborhoods JF 028–032) were concluded to be not eligible for listing in the NRHP under Criterion A, B, or C due to lack of significant associations or a lack of integrity resulting from unsympathetic alterations. Site JF 487 was also initially determined to be not eligible for listing in the NRHP for similar reasons. However, the Kentucky Heritage Council indicated, through the consultation process, that additional research may show Site JF 487 to be potentially eligible for listing on the NRHP (Kentucky Heritage Council 2015). Site 6 (JF 394), the George Herr House, was listed in the NRHP in 1976 (as part of the Herr-Rudy Family Houses nomination) for its associations with settlement patterns and early settlers in the area, and as an excellent example of an early Federal style residence.

In addition to these 15 documented properties, four NRHP or National Historic Landmark (NHL) sites located in the vicinity of the project were evaluated for potential impacts at the request of the Louisville HPO. These include sites JF 527, the NHL Zachary Taylor House; JF 528, the Zachary Taylor National Cemetery; JF 593, the Taylor-Oldham-Herr House; and JF 395, the Taylor-Herr House. They are located in the vicinity of the project but outside of the 1,000-foot buffer APE. Figure 3.3-1 shows the location of these resources in relation to the Brownsboro Site.

Consultation with the Kentucky Heritage Council in January 2015 included submittals of the following materials by VA or its consultant to help satisfy the Section 106 consultation requirements for the Brownsboro Site: Draft Site-Specific EA for the proposed Brownsboro VAMC, the supporting cultural resource survey report, and a Section 106 consultation sheet (CRA 2015; Ordorizzi 2015); this is consistent with previous direction provided by the Kentucky Heritage Council (2011).
Figure 3.3-1. Historic Resources in the Vicinity of the Brownsboro Site.
3.3.2.2 St. Joseph Site

The St. Joseph Site is located in eastern Jefferson County, near the borders of both Oldham and Shelby Counties, which are 0.75 miles northeast and 1.5 miles east, respectively. The site is approximately 1.25 miles west-northwest of Floyds Fork, a tributary of the Salt River. The project area itself previously contained an early twentieth century residence in its northern half (demolished since 2010); it is mostly unimproved agricultural land with abandoned farmstead outbuildings in the northwestern portion. Development surrounding the site is typical of outer suburban areas, with a medical facility and municipal water tower to the south, an interstate expressway and multifamily residential development to the west, agricultural fields on the other side of Factory Lane to the north, and a church, apartment complex, and agricultural land to the east. Historic resources in the vicinity include two historic districts, five individual houses, and several other resources for which NRHP eligibility has not been assessed; see Figure 3.3-2.

A Phase I archaeological inventory survey of the site was conducted in 2012 (Eberwine et al. 2012b), consisting of a combination of controlled interval (grid) and judgmental subsurface testing, and site reconnaissance; a total of 1058 shovel tests were excavated as part of the investigation. The site consisted of two parcels totaling 102 acres that comprise the St. Joseph site. The survey identified a single archaeological site, newly identified Site 15JF810, and two non-site cultural resources loci at the St. Joseph Site. The archaeological site was a low density scatter of historic (i.e., nineteenth and twentieth century) artifacts. The two non-site cultural resources loci each consisted of a single lithic flake. It was determined that these cultural resources do not possess the qualities of significance defined by the National Register Criteria for Evaluation and do not present research potential. Thus, the survey report concluded that the St. Joseph Site does not contain cultural resources listed or eligible for listing in the NRHP, and no further investigations were recommended.

As summarized in Eberwine et al. (2012b), a total of 12 archaeological sites were identified as part of four previously completed cultural resources surveys conducted within 1.2 miles of the St. Joseph Site. One of these, known as Evans Mound, was listed as destroyed (likely due to amateur collections) and no evidence of the site remains. Prehistoric and historic artifacts were recovered from at least eight sites of these sites. Of the 11 existing sites, 3 were determined as not eligible for the NRHP and the eligibility of the other 8 has not been assessed.

Seven properties listed on the NRHP were identified within 1.2 miles of the St. Joseph Site; all are more than one-half mile away. These properties consist of two historic districts and five individual properties:

- The Altawood Historic District encompasses 80 buildings, of which 61 are considered contributing elements.
- The Ashwood Avenue Historic District encompasses nine buildings, of which seven are considered to be contributing elements.

The five individual properties listed on the National Register are single residences:

- The Bondurant-Hustin House is a two-story, wood-framed house built around 1885.
- The Forrester-Duval House was constructed around 1908 and is one of the few larger houses that reflects the Craftsman style in Pewee Valley.
- Tuliphurst represents the best extant Gothic Revival residence within Oldham County.
Note: The St. Joseph Site as evaluated in this EIS comprises only the portion of the parcel south of Factory Lane in this figure.

Figure 3.3-2. Historic Resources in the Vicinity of the St. Joseph Site.
The William Alexander Smith House is a single dwelling constructed in the Italianate style in approximately 1860.

The Otto F. Eitel House, a Bungalow/Craftsman-style home, was built in 1907.

Eberwine et al. (2012b) noted that the two historic districts, located approximately 1 to 1.5 miles north of the St. Joseph Site, may be within the viewshed of the St. Joseph Site. However, site reconnaissance in the site area in 2015, after construction of an elevated municipal water tower just outside the southern end of the parcel, indicated that the water tower was not visible from any street within either historic district.

A total of 19 additional previously recorded structures greater than 50 years in age were identified by Eberwine et al. (2012b) within 1.2 miles of the St. Joseph Site. Fourteen of the structures were within Jefferson County, while the remaining five buildings fell within Oldham County. These resources included 15 residential structures, a barn, a church, a commercial building, and a farm complex. The NRHP eligibility had been assessed for only one of the identified buildings: the early nineteenth century Dorsey-O’Bannon House was previously listed on the NRHP. It subsequently was removed from the NRHP in 1991, as a result of being moved to a different location.

A follow-up check of the Kentucky SHPO files in September 2015 did not reveal any newly added historic resources within a half-mile radius in addition to those described above.

A copy of the Phase I Archaeological Study was submitted to SHPO for review in 2012 as part of Appendix C of the PEA in 2012.

3.3.2.3 Existing Zorn Avenue VAMC

The existing Robley Rex VAMC campus on Zorn Avenue is one of many third generation U.S. Veterans hospitals. Its evaluation for NRHP eligibility is not final but indications are that the site is eligible. The campus itself is not known to contain any archaeological resources but no specific onsite surveys were reported.

The Zorn Avenue campus is about 0.25 miles south-southeast of the Louisville Water Company Pumping Station, a National Historic Landmark; about 0.2 miles west of the Mockingbird Valley Historic District, a residential neighborhood; and about 0.7 miles north of the Clifton and Crescent Hills Historic Districts, also residential neighborhoods. Two potential sites of archaeological resources were identified within a half-mile radius of the campus. Several individual NRHP-listed properties are just outside of a half-mile radius, including L&N Steam Locomotive #152 to the west, Repton (house) and Selema Hall to the south, and the Carrie Gaulbert Cox & Attila Cox House (Ledgelawn) to the east. Additional historic structures that have not been evaluated for NRHP eligibility are in the vicinity. Figure 3.3-3 depicts the historic resources near the Zorn Avenue campus.
Figure 3.3-3. Historic Resources in the Vicinity of the Existing Robley Rex VAMC on Zorn Avenue.
This page intentionally left blank.
3.4 Geology and Soils

Geological resources consist of surface and subsurface materials. Within a given physiographic province, geologic resources are described in terms of topography and physiography, geology, soils, and, where applicable, geologic hazards.

Topography and physiography relate to the shape and arrangement of a land surface, including elevation and the position of natural and human-made features.

Geology is the study of the physical and dynamic history of the Earth and provides information on the structure and configuration of surface and subsurface features. Geologic data are based on field observations of the surface and borings to identify subsurface composition.

Soils are the unconsolidated materials overlying bedrock or other parent material. Soils are described by their type, slope, and physical characteristics. In some cases, soil properties must be examined for their compatibility with particular construction activities or types of land use.

The region of influence for the evaluation of impacts to geology and soils primarily includes the project site footprint.

3.4.1 Regulatory and Policy Framework

The Clean Water Act includes provisions that regulate soil erosion and stormwater runoff to navigable waters. The Act and its applicability to the proposed project is described in greater detail in Section 3.5, Hydrology and Water Quality.

The Earthquake Hazards Reduction Act was enacted to “reduce the risks to life and property from future earthquakes in the United States through the establishment and maintenance of an effective earthquake hazards and reduction program.” The act established the National Earthquake Hazards Reduction Program, led by the Federal Emergency Management Agency.

The Farmland Protection Policy Act was enacted to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. Farmland includes prime farmland, unique farmland, and land of statewide or local importance. Land subject to the requirements of the Act do not have to be currently used for cropland, but can include forest land, pastureland, and cropland (NRCS n.d.).

Executive Order 12699, Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction, requires federal agencies to ensure that buildings (including both new construction and leases) are designed and constructed in accordance with appropriate seismic design and construction standards.

Executive Order 12941, Seismic Safety of Existing Federally Owned or Leased Buildings, adopted standards for assessing the seismic safety of owned and leased buildings and mitigating unacceptable seismic risks in those buildings.

The International Building Code provides minimum standards to protect the public safety, health, and welfare in regard to building construction. The Code was developed to consolidate existing building codes into one uniform code, and includes specifications related to soils and foundations.
VA Directive 7512, Seismic Safety of VA Buildings, establishes policy regarding the seismic safety of VA buildings and incorporates requirements established by Executive Orders 12699 and 12941.

The Louisville Metro Government Land Development Code (Chapter 4, Part 9) guides development on land within a karst-prone area, including geologic assessments conducted by a geologist or engineer licensed in Kentucky. Karstification is the creation of the cavities due to water dissolving carbonate rock (limestone) and may result in the formation of sinkholes.

3.4.2 Current Conditions

3.4.2.1 Regional Physiology and Seismicity

The Louisville area is located in the Outer Bluegrass physiographic region, which is characterized by deeper valleys with little flat land, as the bedrock is primarily composed of interbedded Ordovician limestones and shales that are more easily eroded (KGS 2012). The Outer Bluegrass region typically has low to moderate relief and soils that range from thick over limestones to thin over shales (USGS 2001).

Peak ground accelerations—an indicator of seismic event effects—in the Louisville area are relatively low (a two percent probability over 50 years of exceeding approximately 0.08 to 0.09 times the standard acceleration of gravity) (USGS 2014). Earthquakes have been relatively uncommon in most of Kentucky, with the majority of events occurring in westernmost Kentucky, associated with the New Madrid seismic zone (USGS 2001). Figure 3.4-1 depicts the regional locations of earthquakes (USGS 2012).

![Figure 3.4-1. Earthquakes in Kentucky](image-url)
3.4.2.2 Brownsboro Site

The Brownsboro Site is generally level with an elevation of approximately 585 to 595 feet above mean sea level (AMEC 2014). The topography of the site gently slopes from the north and east to the south and west (see Figure 3.4-2).

![Figure 3.4-2. Topography: Brownsboro Site.](image)

The geologic unit present at the Brownsboro Site is Devonian-aged Sellersburg and Jeffersonville Limestone (Figure 3.4-3, Geologic Code Dsj) (Kepferle 1974, KGS 2014). VA conducted two
geotechnical studies at the Brownsboro location to obtain specific subsurface data in support of
foundation, site preparation and pavement recommendations related to the project design conducted for
this site. The scope of field activities included drilling 12 test borings as part of a preliminary
geotechnical investigation of the property (Greenbaum 2011); and 96 test borings including rock coring in
52 of the borings and monitoring ground water levels via two piezometers installed in the boreholes after
drilling (AMEC 2014). Based on the results of the 108 geotechnical borings across the project site, the
depth at which bedrock was encountered ranged from 5.3 to 18.5 feet below ground surface, with typical
depths of 8 to 12 feet (AMEC 2014). The top of rock elevation ranged from 574 to 584 feet, with an
average elevation between 577 and 578 feet.

The Sellersburg and Jeffersonville Limestone geologic unit is characterized by a relatively high potential
for karst, indicating that the limestone units may contain a high percentage of soluble minerals. Karst
activity is caused by dissolution of the carbonic-based rock formations from acidic rain over time periods
lasting thousands of years. Both rock formations are exposed in the highway rock cuts west and north of
the site. Locations of potential sinkholes were derived from light detection and ranging (LiDAR) data by
the Kentucky Geological Survey (KGS 2015). Figure 3.4-3 depicts the location of a potential sinkhole
within the project site boundary as identified by LiDAR technology. LiDAR data map the surface
elevation of an area and are used to create a digital elevation model suitable for analysis. Surface
depressions resulting from analysis of the digital elevation model are identified as potential sinkholes that
should be further analyzed through field inspection and geotechnical analysis to determine if a sinkhole or
karst feature actually exists. It should be noted that neither the geotechnical evaluation (AMEC 2014) nor
previous geotechnical analyses of the site (in support of the 2012 PEA) concluded that the feature
identified by LiDAR is an existing sinkhole.

While geotechnical investigation of the site in 2011, in support of the 2012 PEA, did not reveal any
closed depressions or sinkholes commonly associated with karst activity, traditional soil borings,
refraction microtremor testing, and a visual reconnaissance of the project site in 2013 did indicate minor
karst features in isolated locations (URS/SmithGroup 2014). A few small diameter depressions located
within the drainage swale in the northern portion of the site appeared to be surface indications of
underlying karstic activity in the underlying rock formations (AMEC 2014). Karstic features include
fractures within the rock that can create areas for soil to migrate from above the rock into fractures,
causing sinkholes or collapse of the overlying soils and surface.

The project site is underlain by Criders silt loam, Bedford silt loam, and Lawrence silt loam (USDA
2015a). Criders silt loam is a well-drained soil weathered from limestone and dolomite, having a
moderately high permeability and a high moisture capacity. Bedford silt loam is a moderately well-
drained soil formed from noncalcareous loess over clayey residuum, having a low to moderately high
permeability and a low moisture capacity. Lawrence silt loam is a somewhat poorly drained soil formed
from thin fine-silty loess over clayey residuum weathered from limestone and dolomite, having a low
permeability and low moisture content.

Figure 3.4-4 depicts the U.S. Department of Agriculture, Natural Resources Conservation Service
(NRCS) National Cooperative Soil Survey for the Brownsboro Site. Table 3.4-1 presents the area
associated with each soil type.

<table>
<thead>
<tr>
<th>Soil Map Unit</th>
<th>Soil Name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrA</td>
<td>Criders silt loam, 0 to 2 percent slopes</td>
<td>27.4</td>
<td>79.3</td>
</tr>
<tr>
<td>LaB</td>
<td>Lawrence silt loam, 2 to 6 percent slopes</td>
<td>2.1</td>
<td>6.1</td>
</tr>
<tr>
<td>NnB</td>
<td>Bedford silt loam, 2 to 6 percent slopes</td>
<td>4.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Ua</td>
<td>Urban land</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 3.4-1. Soils: Brownsboro Site
<table>
<thead>
<tr>
<th>Soil Map Unit</th>
<th>Soil Name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>UakF</td>
<td>Urban land-Udorthents complex, smoothed, 0 to 50 percent slopes</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>UmC</td>
<td>Urban land-Alfic Udarents-Crider complex, 0 to 12 percent slopes</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Source: USDA 2015a.

Prime farmland soil types are important in meeting the U.S. needs for food and fiber. Crider silt loam and Bedford silt loam are considered prime farmland soils, and Lawrence silt loam is considered prime farmland soil if drained. The Brownsboro Site is not currently farmed.

![Figure 3.4-3. Geology: Brownsboro Site.](image)
Figure 3.4-4. Soils: Brownsboro Site.
3.4.2.3 St. Joseph Site

The topography at the St. Joseph Site is undulating, but relatively level in its central and southern portions, with an elevation of approximately 740 to 750 feet above mean sea level (VA 2012). The site generally slopes downward toward drainages to the north and east (see Figure 3.4-5).

The geologic unit present at the St. Joseph Site is Silurian-aged Louisville Limestone (Figure 3.4-6, Geologic Code Slv) (Kepferle 1976, KGS 2014). A geotechnical investigation was conducted at the St. Joseph site to characterize conditions in support of the PEA (Greenbaum 2011). Based on the results of 17 geotechnical borings across the project site, bedrock was encountered in one boring at a depth of 10 feet below ground surface, with typical depths of 11 to 15 feet in the southern portion and 7 to 10 feet in the northern portion.

Legend
- St. Joseph Site

Base Map Source: Crestwood, KY, 7.5-Minute Series. USGS 2013b. Contour Interval = 10 feet

Figure 3.4-5. Topography: St. Joseph Site.
Figure 3.4-6. Geology: St. Joseph Site.
The Louisville Limestone geologic unit is characterized by a moderate potential for karst. A review of potential sinkhole locations as derived from LiDAR data by the Kentucky Geological Survey (KGS 2015) identified no potential sinkholes within the project site boundary. This is consistent with the 2011 investigation of the St. Joseph site (in support of the 2012 PEA), that did not reveal any closed depressions or sinkholes commonly associated with karst activity. The conclusion was that the chance of encountering sinkholes at the site was no greater than in the surrounding area.

The project site is underlain by Crider silt loam, Bedford silt loam, Lindside silt loam, Caneyville silt loam, Nicholson silt loam, and Beasley silt loam (USDA 2015b). Crider silt loam is a well-drained soil weathered from limestone and dolomite, having a moderately high permeability and a high moisture capacity. Bedford silt loam is a moderately well-drained soil formed from noncalcereous loess over clayey residuum, having a low to moderately high permeability and a low moisture capacity. Lindside silt loam is a moderately well-drained soil formed from mixed fine-silty alluvium, having a moderately high permeability and very high moisture content. Caneyville silt loam is a well-drained soil formed from clayey residuum weathered from limestone, having a moderately low permeability and low moisture content. Nicholson silt loam is a moderately well-drained soil formed from thin fine-silty loess over clayey residuum weathered from limestone, having a low permeability and low moisture content. Beasley silt loam is a well-drained soil formed from clayey residuum weathered from calcareous shale and/or calcareous siltstone, having a moderately low permeability and moderate moisture content.

Figure 3.4-7 depicts the U.S. Department of Agriculture, NRCS National Cooperative Soil Survey for the St. Joseph Site. Table 3.4-2 presents the area associated with each soil type.

Table 3.4-2. Soils: St. Joseph Site.

<table>
<thead>
<tr>
<th>Soil Map Unit</th>
<th>Soil Name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeC</td>
<td>Beasley silt loam, 6 to 12 percent slopes</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>CaD2</td>
<td>Caneyville silt loam, 12 to 25 percent slopes, eroded, very rocky</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>CrA</td>
<td>Crider silt loam, 0 to 2 percent slopes</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>CrB</td>
<td>Crider silt loam, 2 to 6 percent slopes</td>
<td>61.5</td>
<td>60.8</td>
</tr>
<tr>
<td>CrC</td>
<td>Crider silt loam, 6 to 12 percent slopes</td>
<td>10.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Ld</td>
<td>Lindside silt loam, occasionally flooded</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>NnB</td>
<td>Bedford silt loam, 2 to 6 percent slopes</td>
<td>11.5</td>
<td>11.3</td>
</tr>
<tr>
<td>NnC</td>
<td>Nicholson silt loam, 6 to 12 percent slopes</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>UahC</td>
<td>Urban land-Udorthents complex, 0 to 12 percent slopes</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>UakF</td>
<td>Urban land-Udorthents complex, smoothed, 0 to 50 percent slopes</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Source: USDA 2015b.

Crider silt loam, Bedford silt loam, and Lindside silt loam are considered prime farmland soils, and Lawrence silt loam is considered prime farmland soil if drained. Nicholson silt loam and Beasley silt loam are farmland soils of statewide importance. The St. Joseph Site is currently farmed.
Figure 3.4-7. Soils: St. Joseph Site.
3.4.2.4 Existing Zorn Avenue Facility

The Zorn Avenue VA medical center (VAMC) is in an overall area of moderate topographic relief with areas of significant relief that prohibit development. The site elevation in the developable portion of the site is approximately 520 to 530 feet above mean sea level. The site generally slopes towards the northeast (see Figure 3.4-8).

![Map of Zorn Avenue VAMC Campus](image)

Legend

- □ Zorn Avenue Site

Basemap Source: Jeffersonville, IN-KY, 7.5-Minute Series. USGS 2013a. Contour Interval = 10 feet

Figure 3.4-8. Topography: Zorn Avenue VAMC Campus.

The geologic units primarily present in the developable portions of the Zorn Avenue campus are Devonian-aged Sellersburg and Jeffersonville Limestone and Quaternary-aged Loess and eolian sand (Figure 3.4-9, Geologic Codes Dsj and Ql respectively) (Kepferle 1974, KGS 2014). Other geologic units present include Silurian-aged Louisville Limestone and Quaternary-aged Alluvium.
The Sellersburg and Jeffersonville Limestone geologic unit is characterized by a relatively high potential for karst. Locations of potential sinkholes were derived from LiDAR data by the Kentucky Geological Survey (KGS 2015). Figure 3.4-9 depicts the location of a potential sinkhole within the site boundary.
The project site is underlain by Crider silt loam and Caneyville-Rock outcrop complex (USDA 2015c). Crider silt loam is a well-drained soil weathered from limestone and dolomite, having a moderately high permeability and a high moisture capacity. Caneyville-Rock outcrop complex is a well-drained soil formed from clayey residuum weathered from limestone, having a moderately low permeability and low moisture content.

Figure 3.4-10 depicts the U.S. Department of Agriculture, NRCS National Cooperative Soil Survey for the Zorn Avenue VAMC location. Table 3.4-3 presents the area associated with each soil type.

Table 3.4-3. Soils: Existing Zorn Avenue VAMC Campus.

<table>
<thead>
<tr>
<th>Soil Map Unit</th>
<th>Soil Name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CcF2</td>
<td>Caneyville-Rock outcrop complex, 12 to 60 percent slopes, eroded</td>
<td>4.8</td>
<td>10.2</td>
</tr>
<tr>
<td>Ua</td>
<td>Urban land</td>
<td>28.9</td>
<td>60.7</td>
</tr>
<tr>
<td>UagB</td>
<td>Urban land-Udarents complex, wet substratum, 0 to 6 percent slopes, rarely flooded</td>
<td>2.5</td>
<td>5.3</td>
</tr>
<tr>
<td>UahC</td>
<td>Urban land-Udorthents complex, 0 to 12 percent slopes</td>
<td>8.0</td>
<td>16.8</td>
</tr>
<tr>
<td>UakF</td>
<td>Urban land-Udorthents complex, smoothed, 0 to 50 percent slopes</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>UmC</td>
<td>Urban land-Alfic Udarents-Crider complex, 0 to 12 percent slopes</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>UmD</td>
<td>Urban land-Alfic Udarents-Crider complex, 12 to 25 percent slopes</td>
<td>2.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Source: USDA 2015c.

The Zorn Avenue campus is currently developed and therefore was not evaluated for the presence of prime farmland.
Figure 3.4-10. Soils: Existing Zorn Avenue VAMC Campus.
3.5 Hydrology and Water Quality

The hydrologic setting of a project includes both surface water and groundwater, and the quantity and quality of each. Local climates are also useful in describing and understanding the local hydrologic setting; the local climate is described in Section 3.2.2. Although they are related to hydrology, floodplains and wetlands are discussed separately in Section 3.9.

Surface water resources typically consist of rivers, streams, lakes, and wetlands. Groundwater consists of subsurface hydrologic resources, and is an essential resource that functions to recharge surface water and is often used for potable water consumption, agricultural irrigation, and industrial applications. Surface water and groundwater resources are important contributors to the economic, ecological, recreational, and human health of a region.

The region of influence for the evaluation of hydrology and water quality impacts primarily includes the project site, underlying groundwater resources, and hydraulically connected offsite drainages and downstream surface waters.

3.5.1 Regulatory Framework

3.5.1.1 Clean Water Act

The Clean Water Act of 1977 gave the U.S. Environmental Protection Agency (EPA) the authority to set effluent standards on an industry-by-industry basis, and continued the requirements to set water quality standards for contaminants in surface waters by requiring each state to adopt water quality standards for receiving water bodies (Section 303). Section 402 of the Act requires the discharge of any pollutant from a point source into navigable waters to be authorized by a permit obtained under the National Pollutant Discharge Elimination System (NPDES). The NPDES establishes limits on specific pollutants in order to restore and maintain the chemical, physical, and biological integrity of the surface water resource. The NPDES also regulates discharge of non-point sources of water pollution, such as stormwater. The Kentucky Energy and Environment Cabinet, Department for Environmental Protection, Division of Water implements the NPDES stormwater permitting program in Kentucky.

Section 303 of the Clean Water Act requires states to adopt water quality standards for all surface waters based on the designated beneficial use. The Kentucky Division of Water’s 2012 Integrated Report identifies impaired water bodies within Kentucky that require water quality standards (KEEC 2013).

Section 401 of the Clean Water Act requires discharges from facilities to comply with the act, including state-established water quality standard requirements. Section 404 of the Clean Water Act regulates the discharge of dredge or fill material into waters of the U.S., which includes wetlands (see Section 3.9).

3.5.1.2 Energy Independence and Security Act

Section 438 of the 2007 Energy Independence and Security Act established new stormwater design requirements for federal development and redevelopment projects to reduce the impacts of stormwater runoff. Specifically, construction projects that disturb more than 5,000 square feet must maintain or restore the predevelopment hydrology to the maximum extent technically feasible with respect to temperature, rate, volume, and duration of flow.
3.5.1.3 State and Local Regulations

Both alternative sites are located in areas with high potential for karst development where groundwater is susceptible to direct contamination from surface activities. Proposed project activities may be subject to the state requirements of 401 KAR 5:037 (KY DEP 2016), and the need to develop a Groundwater Protection Plan (GPP); 401 KAR 5:037 § 2 references the Scope and Applicability for the proposed activities while § 3 refers to the Preparation of GPPs. Requirements of a GPP include facility information, a description of activities that have the potential to pollute groundwater, practices selected to protect groundwater resources, implementation plans, and employee training requirements (KY DEP 2013).

Development of a site under Alternative A or B would be subject to the local stormwater discharge regulations enforced by the Metropolitan Sewer District (MSD) to maintain compliance with the Kentucky Division of Water MS4 stormwater quality permit. These regulations address the core requirement of the MS4 permit to use onsite “green infrastructure” or “green management practices” to control and treat stormwater runoff.

As developed by the Louisville Planning and Design Department, the Land Development Code (Chapter 4, Appendix 4H) requires a plan to control erosion and sedimentation for development and other land-disturbing activities to conserve, preserve, and enhance the natural resources of Jefferson County and to comply with all applicable federal and state requirements for clean water, as well as to achieve other public purposes. In addition, the Land Development Code (Chapter 4, Part 8) requires the protection of waterways and wetlands and specifies buffer sizes along protected waterways and wetlands under the jurisdiction of the U.S. Army Corps of Engineers (VA 2012, LMPC 2006).

3.5.2 Current Conditions

The alternative sites are located within the Lower Ohio subregion, Lower Ohio-Salt accounting unit (the Ohio River Basin below the confluence with the Kentucky River Basin) (USGS 2015a). Kentucky is divided into five basin management units; the project sites are located within the Salt River-Licking River basin management unit (KEEC 2013).

According to the Groundwater Atlas of the United States, carbonate rocks of Devonian, Silurian, and Ordovician age, which are primarily limestone with some dolomite, are the principal aquifers in large areas of central Kentucky in the Interior Low Plateaus Province. The Ordovician rocks crop out and lie beneath Silurian, Devonian, and younger rocks. The carbonate rock aquifers consist of almost pure limestone and minor dolomite and are interlayered with confining units of shale and limestone. Where these aquifers are in the subsurface, they are overlain by and separated from the Mississippian aquifers by a confining unit of Upper Devonian shale. The depth of freshwater in the limestone and dolomite aquifers can vary greatly, but wells completed in these aquifers generally range from 50 to 200 feet deep in Kentucky (VA 2012).

3.5.2.1 Brownsboro Site

The Brownsboro Site is located in the upper reach of the Muddy Fork of the Beargrass Creek watershed (hydrologic unit 051401010904) (USGS 2015b), which is an urbanized watershed that covers approximately nine square miles of metropolitan Louisville. A relatively high percentage of this watershed is impervious (allowing little infiltration of precipitation into the soil and generating higher levels of runoff) because of intense development. A number of poorly performing septic tanks and considerable usage of lawn chemicals contribute to impaired water quality within the urban streams, and overall impacts to the watershed area are considered moderate to severe (MSD 2012a).
There are no intermittent or perennial flowing surface waters on the project site. The nearest surface water body is Goose Creek, located approximately one mile east of the site; Goose Creek ultimately drains into the Ohio River. The annual mean flow in Goose Creek east of the site is 9.81 cubic feet per second (USGS 2015c). Goose Creek in the vicinity of the Brownsboro Site is currently designated as an impaired water for primary contact recreation and warm water aquatic habitat uses (KEEC 2013).

Surface drainage (based on topographic elevations) on the north half of the site is generally toward the center of this half of the property, where stormwater ponds or collects before infiltrating or evaporating. The south half of the site drains generally toward the southwest corner, where stormwater exits the property to a drainage ditch within the Watterson Expressway right of way. Stormwater from the office building parking lot located northeast of the site drains to a narrow concrete ditch that runs along the edge of the parking lot and then disperses onto the Brownsboro Site. Stormwater from the adjacent properties along the east border generally drains west towards the Brownsboro Site.

Shallow groundwater was encountered in only 2 of the 108 soil test borings drilled at the project site at the time of drilling, however, water levels were read in both wells on three separate occasions and historical groundwater information from the KGS was also reviewed (AMEC 2014). The groundwater was between 11 and 13 feet below ground surface at an elevation of approximately 577 feet above mean sea level, which was about one foot above the bedrock in these borings. Published data indicate groundwater conditions in the area are related to either perched water or water confined within karst features in the upper portions of the underlying rock units. Two perennial springs (Taylor and Winding Hills) are located approximately one-third mile west of the site. The springs exit the ground surface at approximate elevations of 570 and 546 feet (AMEC 2014).

3.5.2.2 St. Joseph Site

The St. Joseph Site is located in the Brush Run-Floyds Fork Watershed (hydrologic unit 051401020806) (USGS 2015b). The MSD is recently completed construction of the Floyds Fork Water Quality Treatment Center just north of Interstate 64. This large treatment plant was intended to eliminate the less efficient small package plants and septic tanks from the most populated areas of the watershed (MSD 2012b; personal communication, J. Ashby of MSD, January 19, 2016).

Surface water in the northern portion of the site infiltrates into site soils and collects in two depressional wetlands and a perennial stream channel (a tributary to Floyds Fork), crossing the northern portion of the site from west to east. Both depressional wetlands are hydraulically connected to the Floyds Fork tributary. Wetlands are discussed in Section 3.9. The perennial stream appears to primarily be the result of shallow groundwater seepage; however, surface water runoff also contributes to its perennial state (VA 2012); this stream is not a special use water (KY DEP 2016).

The perennial stream channel flows offsite to the east into a pond on the east adjoining property and further discharges to the river known as Floyds Fork, located approximately 1.2 miles east of the St. Joseph Site. Floyds Fork flows generally to the south-southwest and discharges into the Salt River approximately 22 miles south of the site. The Salt River flows an additional approximately 14 miles to the west and discharges into the Ohio River (VA 2012). The annual mean flow in Floyds Fork east of the site is 127.8 cubic feet per second (USGS 2015d). Floyds Fork in the vicinity of the St. Joseph Site is currently designated as an impaired water for primary contact recreation and warm water aquatic habitat uses (KEEC 2013).

Surface water in the central portion of the St. Joseph Site infiltrates into site soils, collects in a depressional wetland located in the central portion of the site, and flows offsite to the east in an intermittent drainage swale. An intermittent swale periodically discharges water from the depressional wetland in extreme water events (VA 2012).
Surface water in the southern portion of the St. Joseph Site infiltrates into site soils and collects in a low-lying area along the southern boundary of the site. A small perennial stream originates near the southern boundary of the site and flows from east to west. The perennial stream appears to primarily be the result of shallow groundwater seepage; however, surface water runoff also contributes to its perennial state (VA 2012).

Groundwater was not encountered in any of the geotechnical soil borings conducted at the St. Joseph Site, which were advanced to depths ranging from approximately 2 to 15 feet below ground surface. However, groundwater may be seasonally present at these depths (VA 2012). In the absence of site-specific information pertaining to groundwater flow direction, it is assumed that the water table often follows the ground surface topography. Therefore, the shallow groundwater at the site is likely to flow towards the on-site stream in the northern portion of the site; and groundwater in the overall area is likely to flow east towards Floyd Fork River.

3.5.2.3 Existing Zorn Avenue Facility

The existing Zorn Avenue VAMC campus is located in the lower portion of the Muddy Fork of the Beargrass Creek watershed (hydrologic unit 051401010904) (USGS 2015b), which is an urbanized watershed that covers approximately nine square miles of metropolitan Louisville. A relatively high percentage of this watershed is impervious because of intense development. A number of poorly performing septic tanks and considerable usage of lawn chemicals contribute to impaired water quality within the urban streams, and overall impacts to the watershed area are considered moderate to severe (MSD 2012a).

Drainages on the Zorn Avenue campus flow towards Muddy Fork of Beargrass Creek, located adjacent to the northwestern site boundary. Muddy Fork ultimately drains into the Ohio River. The annual mean flow in Muddy Fork northeast of the site is 9.79 cubic feet per second (USGS 2015e). Muddy Fork of Beargrass Creek in the vicinity of the Zorn Avenue VAMC campus is currently designated as an impaired water for primary contact recreation uses (KEEC 2013).
3.6 Wildlife and Habitat

The term “wildlife” collectively refers to terrestrial and aquatic species, including mammals, birds, reptiles, invertebrates, amphibians, and fish, and “habitat” is the set of ecological and physical factors that sustain wildlife species. Wildlife and habitat are interchangeably discussed as biological resources. This analysis also evaluates potential impacts to plant species in the environment, whether or not they provide habitat for wildlife.

3.6.1 Regulatory and Policy Framework

Certain wildlife and plant species are provided special protections under the Endangered Species Act of 1973 because of declining populations, loss of habitat, and inadequate conservation. Protected species fall under one of two classifications:

- Endangered species are in danger of extinction throughout all or a significant portion of their range.
- Threatened species are likely to become endangered within the foreseeable future.

A species that is being considered for protection as either endangered or threatened is described as “proposed” if a proposed regulation for its listing has been published in the Federal Register, or “candidate” if a proposed regulation has not been published. The Endangered Species Act is administered by the Department of the Interior’s Fish and Wildlife Service (FWS) and, for marine resources, the Commerce Department’s National Oceanic and Atmospheric Administration. Section 4 of the Endangered Species Act addresses the listing and recovery of species and designation of critical habitat, which is a defined geographic area that contains features essential to conserving a threatened or endangered species. Section 7 requires all federal agencies to ensure that any action they authorize, fund, or implement is not likely to jeopardize the continued existence of a federally protected species or result in destruction or adverse modification of its designated critical habitat. Section 9 prohibits the unauthorized “take” of federally protected species, which includes harassment, harm, pursuit, hunting, shooting, wounding, killing, trapping, capture, or collection of a protected species, or the attempt to engage in any such conduct.

The Migratory Bird Treaty Act of 1918 and Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds, require federal agencies to minimize or avoid impacts on migratory birds. If a federal action cannot avoid measurable negative impact on migratory birds, the responsible agency must develop and implement, within two years, a Memorandum of Understanding with the FWS to promote the conservation of migratory bird populations. Migratory birds are those that live, reproduce, or migrate within or across international borders during their annual life cycle. The Act prohibits the taking (hunting, wounding, killing, possessing, or transporting) of any migratory bird, their eggs, features, or nests.

The Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act provide continued federal protection for the bald eagle, which was removed from the federal list of endangered and threatened wildlife in 2007, although it may still be additionally protected where it is listed under state laws. National guidelines for bald eagle management have been developed (FWS 2007). Golden eagles received protection under the Eagle Act in 1962 due to the threat of their extinction, their similarity of appearance to bald eagles, and their value to agriculture as predators of rodents. Both species of eagles have special significance to Native American culture.

The Federal Noxious Weed Act mandates control of noxious weeds by limiting possible weed seed transport from infested areas to non-infested sites. Executive Order 13112, Invasive Species, requires
federal agencies to prevent the introduction of invasive species; provide for their control; minimize their economic, ecological, and human health impacts; and, to the extent practicable, not authorize, fund, or carry out management actions that are likely to cause the introduction or spread of invasive species.

The State of Kentucky’s species of greatest wildlife conservation need are identified in the Kentucky Comprehensive Wildlife Conservation Strategy (KDFWR 2013). The Kentucky Rare Plant Database identifies plant species of conservation interest to the state (KSNPC 2014).

The Kentucky State Nature Preserves Commission publishes the County Report of Endangered, Threatened, and Special Concern Plants, Animals, and Natural Communities of Kentucky, which lists both federally and state protected species (KSNPC 2015). The listed species for Jefferson County are provided in Table 3.6-1.

Table 3.6-1. Federally and State Listed Species in Jefferson County, Kentucky.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myotis grisescens</td>
<td>gray myotis</td>
<td>endangered</td>
<td>threatened</td>
</tr>
<tr>
<td>Myotis septentrionalis</td>
<td>northern long-eared bat</td>
<td>threatened</td>
<td>endangered</td>
</tr>
<tr>
<td>Myotis sodalis</td>
<td>Indiana bat</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Nycticeius humeralis</td>
<td>evening bat</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accipiter striatus</td>
<td>sharp-shinned hawk</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Actitis macularius</td>
<td>spotted sandpiper</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Ammodramus henslowii</td>
<td>Henslow's sparrow</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Ardea alba</td>
<td>great egret</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Chondestes grammacus</td>
<td>lark sparrow</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Cistothorus platensis</td>
<td>sedge wren</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>peregrine falcon</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>bald eagle</td>
<td>protected under Bald and Golden Eagle Protection Act</td>
<td>threatened</td>
</tr>
<tr>
<td>Lophodytes cucullatus</td>
<td>hooded merganser</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Pandion haliaetus</td>
<td>osprey</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Passerculus sandwichensis</td>
<td>savannah sparrow</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Phalacrocorax auritus</td>
<td>double-crested cormorant</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Stermula antillarum</td>
<td>interior least tern</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Thryomanes bewickii</td>
<td>Bewick's wren</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Tyto alba</td>
<td>barn owl</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clonophis kirtlandi</td>
<td>Kirtland's snake</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Ophisaurus attenuatus</td>
<td>eastern slender glass lizard</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>lonchicauus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Invertebrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calephelis borealis</td>
<td>northern metalmark</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Pseudanophthalmus</td>
<td>Louisville cave beetle</td>
<td>candidate</td>
<td>threatened</td>
</tr>
<tr>
<td>trogodytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satyrium favonius ontario</td>
<td>northern oak hairstreak</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Webbellus multilineata</td>
<td>striped whitelip</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acipenser fulvescens</td>
<td>lake sturgeon</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Alosa alabamae</td>
<td>Alabama shad</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Atractosteus spatula</td>
<td>alligator gar</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Ictiobus niger</td>
<td>black buffalo</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Lota</td>
<td>burbot</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
</tbody>
</table>
Aquatic Invertebrates

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturus stigmosus</td>
<td>northern madtom</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Percopsis omiscomaycus</td>
<td>trout-perch</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Leptoxis praerosa</td>
<td>onyx rocksnail</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Lithasia verrucosa</td>
<td>varicos rocksnail</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Cumberlandia monodonta</td>
<td>spectacul case</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Cyprogenia stegearia</td>
<td>fanshell</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Lampsilis abrupta</td>
<td>pink mucket</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Obovaria retusa</td>
<td>ring pink</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Plethobasus cooperianus</td>
<td>orangefoot pimpleback</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Plethobasus cyphus</td>
<td>sheepnose</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Pleurobema clava</td>
<td>clubshell</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Potamia capax</td>
<td>fat pocketbook</td>
<td>endangered</td>
<td>endangered</td>
</tr>
<tr>
<td>Quadrula cylindrica</td>
<td>rabbitsfoot</td>
<td>threatened</td>
<td>threatened</td>
</tr>
<tr>
<td>Simpsonias ambigua</td>
<td>salamander mussel</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Villosa lienosa</td>
<td>little spectacul case</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Gammarus bousfieldi</td>
<td>Bousfield's amphipod</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Orconectes jeffersoni</td>
<td>Louisville crayfish</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
</tbody>
</table>

Plants

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castanea pumila</td>
<td>Allegheny chinkapin</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Dryopteris carthusiana</td>
<td>spinulose wood fern</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Heteranthera dubia</td>
<td>grassleaf mud-plantain</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Leavenworthia exigua var. lacinata</td>
<td>Kentucky glade cress</td>
<td>threatened</td>
<td>endangered</td>
</tr>
<tr>
<td>Podostemum ceratophyllum</td>
<td>threadfoot</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Pontederia cordata</td>
<td>pickerel-weed</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Potamogeton illinoensis</td>
<td>Illinois pondweed</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Sagittaria graminea</td>
<td>grassleaf arrowhead</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Stellaria longifolia</td>
<td>longleaf stichwort</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Trichostema setaceum</td>
<td>narrowleaved bluecurls</td>
<td>no Federal status</td>
<td>endangered</td>
</tr>
<tr>
<td>Trifolium stoloniferum</td>
<td>running buffalo clover</td>
<td>endangered</td>
<td>threatened</td>
</tr>
<tr>
<td>Vallisneria americana</td>
<td>eelgrass</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Veratrum woodii</td>
<td>Wood's bunchflower</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
<tr>
<td>Viola septemloba var. egglestonii</td>
<td>Eggleston's violet</td>
<td>no Federal status</td>
<td>special concern</td>
</tr>
<tr>
<td>Vitis labrusca</td>
<td>northern fox grape</td>
<td>no Federal status</td>
<td>threatened</td>
</tr>
</tbody>
</table>

Sources: KSNPC 2015, FWS 2013, FWS 2015a.

3.6.2 Current Conditions

3.6.2.1 Brownsboro Site

The Brownsboro Site is a remnant cultivated field now covered predominantly by various grasses, clovers, and alfalfa, with a few large deciduous trees. The vegetation is maintained by periodic mowing. This type of habitat surrounded by development can typically support wildlife common in urban settings, such as rodents, rabbits, and various songbirds. No aquatic habitat or species are present on the site.

In 2011, the FWS stated that wildlife and plant species that are currently federally listed as threatened or endangered have the potential to occur in the area: Indiana bat, running buffalo clover, and Kentucky glade cress (then a candidate species, now listed as threatened) (FWS 2011a):

- Although the Brownsboro Site is within the home range of a known Indiana bat maternity colony, the remaining trees on the site are not suitable roost trees for the bat (FWS 2011b). The Indiana
bat winters in caves and mines, none of which are present on the site. However, in the late spring and summer, these bats migrate to wooded areas where Indiana bats roost under loose tree bark or in cracks and crevices on living or dead trees with at least a five-inch diameter at breast height.

- Running buffalo clover is found in partially shaded woodlots, mowed areas (parks, lawns, cemeteries), and along streams and trails; it does not tolerate full sun or severe disturbance. The Brownsboro Site has been severely disturbed by agricultural practices and is exposed to full sun. The clover is not known to occur in the vicinity of this site.

- Critical habitat for the glade cress is designated in specific areas south of I-265 and east of I-65 in Jefferson County (FWS 2014). The Brownsboro Site is not included in or near any designated critical habitat.

The northern long-eared bat was listed as threatened in 2015. FWS (2015b) stated that it appears there is no potential winter habitat for the northern long-eared bat on the Brownsboro Site, but that the project area is in northern long-eared bat summer habitat (FWS 2016), and there is a possibility that any remaining trees on the site could serve as roost trees. Northern long-eared bat roost trees typically contain peeling bark or cavities, similar to roost trees used by the Indiana bat, but can be as small as three inches diameter at breast height. In response to comments on the Draft EIS FWS indicated that VA could address potential impacts to the northern long-eared bat by utilizing the optional streamlined consultation framework for this species (FWS 2016). This framework allows federal agencies to rely upon the U.S. Fish and Wildlife Service’s January 5, 2016 intra-Service Programmatic Biological Opinion on the final 4(d) rule for the NLEB for section 7(a)(2) compliance. VA opted to conduct the suggested NLEB 4(d) rule streamlined consultation for the long-eared Indiana bat (VA 2017).

The Kentucky Department of Fish and Wildlife Resources stated that no listed species were identified for the Brownsboro Site, but noted that it is within range of Indiana bat summer maternity habitat (VA 2012).

3.6.2.2 St. Joseph Site

The St. Joseph Site is undeveloped and currently being used for agriculture, with a few acres of fragmented forest and scattered areas of grasses. A tree-lined tributary to Floyds Fork, with associated wetlands and ponds, crosses the northern portion of the site. The wildlife typically present on an undeveloped parcel in this outer suburban area in Jefferson County would include small to large mammals, likely including deer, coyote, fox, raccoon, skunk, and rodents; as well as birds, and some reptiles (turtles and snakes) and amphibians (frog and toads).

FWS (2011b) stated that the St. Joseph Site is located within potential Indiana bat habitat range and includes habitat that supports the presence of running buffalo clover. In response, VA contracted for biological surveys of the site (TTL 2012a, 2012b). The findings are summarized as follows:

The St. Joseph Site includes areas that could provide foraging and roosting habitat for Indiana bats. The northern portion of the parcel and along the eastern site boundary (northern portion) are the most likely areas for Indiana bat activities due to the number of trees and available surrounding habitat. To a lesser extent, a wetland area in the central portion of the site supports foraging and roosting habitat for Indiana bats; however, its small size (approximately 0.34 acres) and the small number of available trees for roosting (three trees) would limit bat activities in this area. The southern portion of the eastern site boundary and two lone trees south of a wetland area in the northeast portion are not likely to support roosting activities by Indiana bats; however, due to their proximity to higher quality habitats, they would likely serve as foraging habitat if Indiana bats were present. Although the southernmost section of the site includes sufficiently sized trees for roosting and surrounding habitat that may be used for foraging, it is less likely to be an active
location for Indiana bats due to its limited extent and adjacent human activity (water tower and I-265).

- The majority (approximately 80 percent) of the St. Joseph Site is cultivated agricultural land that is exposed to full sun. These conditions are not suitable running buffalo clover habitat. However, several smaller areas that could potentially support the presence of this plant species were identified within the St. Joseph Site, including the edge areas of the tree lines along the eastern boundary, the Floyds Fork tributary, the three wetlands, Factory Lane, and the wooded area along the southern boundary. Although the habitat survey was conducted in late January/early February 2012, which is not ideal for identifying running buffalo clover, due to the unusually mild winter left remnants of short-growing herbaceous vegetation. Areas with suitable habitat for running buffalo clover were covered with invasive herbaceous species and no clover of any kind was observed. In May 2012, a survey of the St. Joseph Site specifically for running buffalo clover revealed significant populations of white clover (*Trifolium repens*) and red clover (*Trifolium pratense*), but no running buffalo clover. However, the protected species was identified in three separate locations offsite along the eastern boundary of the site’s southern portion. Two of the locations included one individual each and the third location included two individuals. Because the latest survey is more than four years old and running buffalo clover has been identified at nearby locations, FWS recommends that an additional survey be conducted for this species (FWS 2016).

The roosting and foraging habitat on the St. Joseph Site identified as suitable for the Indiana bat would also support the recently listed northern long-eared bat. Similar to the Brownsboro alternative, FWS indicated that VA could address potential impacts to the northern long-eared bat by utilizing the optional streamlined consultation framework for this species (FWS 2016). VA opted to conduct the suggested NLEB 4(d) rule streamlined consultation for the long-eared Indiana bat (VA 2017).

Kentucky glade cress is limited to a specific area south of I-265 and east of I-65 in Jefferson County and is therefore not expected to occur at this location (FWS 2016). No critical habitat for Kentucky glade cress is located at or near the site (FWS 2014). The Kentucky Department of Fish and Wildlife Resources stated that no listed species were identified in the vicinity of the St. Joseph Site (VA 2012).

3.6.2.3 Existing Zorn Avenue VAMC

Approximately half of the 47-acre campus of the existing Robley Rex VAMC on Zorn Avenue is developed with buildings, parking, and roadways. The remaining land consists mainly of heavily wooded steep slopes within a larger suburban context. Wildlife that are present in the undeveloped campus areas would be well-adapted to human activity, and likely include a variety of small mammals, rodents, birds, reptiles, and amphibians.

FWS (2011a) stated that the existing campus is within the home range of a known Indiana bat maternity colony. The wooded areas of the campus are considered highly likely to support Indiana bats, and are thus likely to also provide habitat for the northern long-eared bat. FWS also stated that running buffalo clover could be present onsite. No critical habitat for Kentucky glade cress in located at or near the Zorn Avenue facility.
This page intentionally left blank.
3.7 Noise

Noise is defined as any sound that is undesired by the recipient and typically includes sounds not present in the natural environment, such as sounds emanating from aircraft; highways; and industrial, commercial, and residential sources. Noise generally interferes with normal activities or otherwise diminishes the quality of the natural environment. Noise may be intermittent or continuous, steady or impulsive, stationary or transient.

The standard measurement unit of sound is the decibel (dB), which represents the relationship between a measured sound pressure level and the minimum sound level a person with good hearing can detect reported on a logarithmic scale. A doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by three decibels, and a halving of the energy would result in a three-decibel decrease, both of which are barely perceptible to the human ear.

The human ear is not equally sensitive to all frequencies within the sound spectrum. Therefore, sound can be characterized by several methods. The most common method is the “A-weighted” sound level (dBA), which gives greater weight to the frequencies audible to the human ear by filtering out noise frequencies not audible to the human ear. Human judgments of the relative loudness or annoyance of a sound correlate well with the dBA levels of those sounds. Therefore, the dBA scale is used for measurements and standards involving the human perception of noise. Figure 3.7-1 provides common sounds and the corresponding sound levels to demonstrate human perception of the correlation of noise with acoustical energy.

Noise levels vary continuously with time, and various descriptions of noise are used to account for this variance with time, including L_{eq} (which is the equivalent continuous sound level), L_{min} and L_{max} (which are the minimum and maximum noise levels recorded during a monitoring period), and L_{dn} (which is the day-night average sound level).

The construction and operation of new facilities generates noise. Construction-related noise is associated with the operation of construction equipment and vehicles, both in transit to/from and at the project site. Equipment noise levels also vary as a function of the usage factor or percentage of time the equipment is employed. Table 3.7-1 provides a list of noise levels associated with typical construction equipment.

The Roadway Construction Noise Model is a national noise screening model developed by the Federal Highway Administration to predict construction noise levels and determine compliance with regulatory noise limits.

The region of influence for the evaluation of noise impacts primarily includes the project site and surrounding areas within 0.5 miles, although sensitive receptors up to 2 miles from the project site were considered.

Ground-borne vibration is commonly associated with noise since vibration sources include many of the same sources (for example, construction equipment and vehicles) and may also interfere with normal activities or otherwise diminish the quality of the natural environment. Ground-borne vibration is not a common environmental problem, as it is unusual for vibration from sources such as road vehicles to be perceptible, even in locations close to major roads. Perceptible vibration sources for projects similar to that analyzed in this EIS include construction-related equipment (for example, heavy earth-moving equipment, pile-driving equipment, and blasting operations).

Ground-borne vibration is typically reported as the root mean square of the vibration velocity level in vibration decibels. The approximate threshold for human perception of vibration is 65 vibration decibels.
Figure 3.7-1. Common Sounds and Corresponding Sound Levels.

Source: HUD 2009.
Table 3.7-1. Noise Levels Associated with Typical Construction Equipment.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Typical Noise Level 50 feet from source (dBA)</th>
<th>Typical Usage Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Clay shovel (dropping)</td>
<td>93</td>
<td>20</td>
</tr>
<tr>
<td>Compactor (ground)</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Concrete mixer truck</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>Concrete pump truck</td>
<td>82</td>
<td>20</td>
</tr>
<tr>
<td>Concrete saw</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>Crane</td>
<td>85</td>
<td>16</td>
</tr>
<tr>
<td>Dozer</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>Dump truck</td>
<td>84</td>
<td>40</td>
</tr>
<tr>
<td>Excavator</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>Flat bed truck</td>
<td>84</td>
<td>40</td>
</tr>
<tr>
<td>Front end loader</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Generator</td>
<td>82</td>
<td>50</td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>85</td>
<td>20</td>
</tr>
<tr>
<td>Man lift</td>
<td>85</td>
<td>20</td>
</tr>
<tr>
<td>Pickup truck</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Pneumatic tools</td>
<td>85</td>
<td>50</td>
</tr>
<tr>
<td>Pumps</td>
<td>77</td>
<td>50</td>
</tr>
<tr>
<td>Scraper</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>Tractor</td>
<td>84</td>
<td>40</td>
</tr>
<tr>
<td>Warning horn</td>
<td>85</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: Typical construction equipment selected from Roadway Construction Noise Model default equipment list.

3.7.1 Regulatory Framework

3.7.1.1 Noise Control Act

The U.S. EPA Office of Noise Abatement and Control was originally established to coordinate federal noise control activities. Upon its enactment, the office also implemented the Federal Noise Control Act of 1972, which established programs and guidelines to identify and address the effects of noise on public health and welfare and the environment. Table 3.7-2 summarizes guidelines for noise levels considered safe for community exposure without the risk of adverse effects to health or welfare (EPA 1974). To prevent hearing loss over the lifetime of a receptor, the yearly average Leq should not exceed 70 dBA, and the Ldn should not exceed 55 dBA in outdoor activity areas or 45 dBA indoors to prevent interference and annoyance.

Table 3.7-2. Summary of EPA-Recommended Noise Level Standards

<table>
<thead>
<tr>
<th>Effect</th>
<th>Level</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing loss</td>
<td>Leq(24) ≤ 70 dB</td>
<td>All areas</td>
</tr>
<tr>
<td>Outdoor activity interference and annoyance</td>
<td>Ldn ≤ 55 dB</td>
<td>Outdoors in residential areas and farms and other outdoor areas where people spend widely varying amounts of time and other places in which quiet is a basis for use</td>
</tr>
<tr>
<td></td>
<td>Leq(24) ≤ 55 dB</td>
<td>Outdoor areas where people spend limited amounts of time, such as school yards and playgrounds</td>
</tr>
<tr>
<td>Indoor activity interference and annoyance</td>
<td>Ldn ≤ 45 dB</td>
<td>Indoor residential areas</td>
</tr>
<tr>
<td></td>
<td>Leq(24) ≤ 45 dB</td>
<td>Other indoor areas with human activities such as schools</td>
</tr>
</tbody>
</table>

In 1981, EPA administrators determined that subjective issues such as noise would be better addressed at lower levels of government. Consequently, in 1982, responsibilities for regulating noise control policies were transferred to state and local governments. However, noise control guidelines and regulations contained in the rulings by EPA in prior years are still upheld by designated federal agencies, allowing more individualized control for specific issues by designated federal, state, and local government agencies. The Noise Control Act is applicable to the project insofar as it establishes general guidelines for acceptable noise levels perceived by adjacent or onsite receptors.

3.7.1.2 Federal Transit Authority Ground-Borne Vibration Guidelines

The Federal Transit Authority has established guidelines for maximum-acceptable vibration criteria for different land uses. Maximum acceptable vibration criteria based on the frequency of an event are applied to the different land uses to address the human response to ground-borne vibration (FTA 2006).

The Federal Transit Authority also established criteria addressing the potential for construction-caused vibration annoyance or interference. The primary concern related to construction vibration is the potential to cause structural damage to buildings by the operation of heavy-duty construction equipment. Situation-specific criteria address the level of vibration considered acceptable before it may result in damage to structures or different building types (FTA 2006).

3.7.1.3 Local Noise Control Ordinances

Title IX, Chapter 99, of the Louisville-Jefferson County Metro Government Regulations contains local regulations pertaining to noise. Specifically relevant to this project, “the use or operation of any vehicle in such manner as to produce any unreasonably loud, harsh or excessive noise, or to discharge into the open air the exhaust of any vehicle except through a muffler or other device which will effectively prevent any unreasonably loud, harsh or excessive noises therefrom” is considered to be “unreasonably loud, harsh or excessive noises in violation of this ordinance” (AmLegal 2015). Noises resulting from construction or demolition activity are exempt from the ordinance, provided such activity takes place between the hours of 7:00 A.M. and 9:00 P.M. (AmLegal 2015).

Kentucky Revised Statute Chapter 350.430, Explosives, establishes notification and recordkeeping requirements for use of explosives in blasting activities (KRS 2015).

3.7.2 Current Conditions

For each alternative, noise-sensitive land uses were identified within two miles of the site. Noise-sensitive land uses identified include:

- Cemeteries
- Hospitals
- Hotels/motels
- Libraries
- Public parks
- Schools

Baseline sound levels were measured at representative locations in the vicinity of each alternative site to determine the representative existing sound levels. These monitoring locations are shown in Figures 3.7-2 through 3.7-4 in the descriptions of current conditions at each site. Sound levels were measured using an Extech Instruments Model 407736 digital sound level meter, which meets American National Standards.
Institute S1.4-1983 and International Electrotechnical Commission 60651 Type II standards. The meter’s internal calibration feature was checked prior to obtaining measurements at each location, and the meter was operated on the A-weighting scale with slow response using a porous windscreen. Sound level measurements were taken at intervals over a recorded monitoring period at each location. Notes regarding monitoring conditions were recorded, and the \(L_{eq} \), \(L_{min} \), \(L_{max} \), and 10-, 50-, and 90-percentile (\(L_{10} \), \(L_{50} \), and \(L_{90} \)) values were determined (see Table 3.7-3). The measured daytime sound levels are characteristic of a typical urban to suburban area.

Table 3.7-3. Existing Sound Level Measurements

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Date/ Time</th>
<th>(L_{eq})</th>
<th>(L_{max})</th>
<th>(L_{10})</th>
<th>(L_{50})</th>
<th>(L_{90})</th>
<th>(L_{MIN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Louisville VAMC</td>
<td>9/2/2015 11:29 AM</td>
<td>53.1</td>
<td>57.4</td>
<td>56.6</td>
<td>52.1</td>
<td>51.0</td>
<td>50.6</td>
</tr>
<tr>
<td>M2</td>
<td>Brownsboro Site</td>
<td>9/2/2015 3:02 PM</td>
<td>54.3</td>
<td>56.5</td>
<td>56.2</td>
<td>54.1</td>
<td>52.1</td>
<td>51.8</td>
</tr>
<tr>
<td>M3</td>
<td>St. Joseph Site</td>
<td>9/3/2015 1:59 PM</td>
<td>53.2</td>
<td>59.2</td>
<td>53.5</td>
<td>51.8</td>
<td>50.9</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Key: \(L_{eq} \) = equivalent sound level, \(L_{MIN} \) = minimum sound level, \(L_{max} \) = maximum sound level, \(L_n \) = sound level exceeded \(n\% \) of the specific time period.

Observation Notes:
- Site 1: Calm/light breeze, cars passing in parking lot, personal conversations, wildlife.
- Site 2: Light winds, cars passing on road approximately 50 ft. to north, Interstate traffic approx. 150 ft. to west.
- Site 3: Calm winds, cars passing in parking lot, landscape maintenance activities, wildlife.

Noise-sensitive buildings are also commonly considered as vibration-sensitive receptors. Historic or lightweight buildings are considered most vulnerable to vibration disturbance or damage. Vibration due to passing vehicles or other activities was not noticeable during the collection of sound level measurements at any of the alternative site areas.

3.7.2.1 Brownsboro Site

The Brownsboro Site is generally consistent with an urban or suburban setting. As such, the predominant noise sources in the area include mobile sources (such as personal and commercial vehicles) and stationary sources (such as heating, ventilation, and air conditioning units attached to buildings). Vehicle traffic and associated noise is heaviest along I-264 (west of site) and Brownsboro Road (State Highway 22, north of site).

Noise-sensitive land uses in the Brownsboro Site area were identified and mapped (see Figure 3.7-2). Table 3.7-4 lists these receptors and their proximity to the Brownsboro Site. The nearest residential area to the Brownsboro Site is adjacent to the eastern and southern site boundary.
Figure 3.7-2. Brownsboro Site Area Noise-Sensitive Receptors.
Table 3.7-4. Noise-Sensitive Receptors in Brownsboro Site Area.

<table>
<thead>
<tr>
<th>Receptors within 0.5 miles of Brownsboro Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 – Zachary Taylor National Cemetery</td>
</tr>
<tr>
<td>R3 – Brownsboro Inn</td>
</tr>
<tr>
<td>S19 – Ballard High School</td>
</tr>
<tr>
<td>S20 – Wilder Elementary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptors within 0.5 - 1.0 miles of Brownsboro Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S17 – Dunn Elementary</td>
</tr>
<tr>
<td>S21 – Kammerer Middle School</td>
</tr>
<tr>
<td>S23 – St. Albert the Great Catholic School</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptors within 1.0 - 2.0 miles of Brownsboro Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4 – Westport Library</td>
</tr>
<tr>
<td>P17 – Community Park</td>
</tr>
<tr>
<td>P18 – Warwick Park</td>
</tr>
<tr>
<td>P19 – Robinson Park</td>
</tr>
<tr>
<td>S22 – Westport Middle School</td>
</tr>
<tr>
<td>S24 – Waldorf School of Louisville</td>
</tr>
<tr>
<td>S27 – Trinity High School</td>
</tr>
<tr>
<td>S28 – Walden School</td>
</tr>
<tr>
<td>S29 – Holy Trinity Parish School</td>
</tr>
<tr>
<td>S30 – Second Presbyterian School</td>
</tr>
</tbody>
</table>

3.7.2.2 St. Joseph Site

The St. Joseph Site is generally consistent with a suburban to rural setting. As such, the predominant noise sources in the area include mobile sources (such as personal and commercial vehicles). Vehicle traffic and associated noise is heaviest along I-265 (west of site) and Factory Lane (north of site).

Noise-sensitive land uses in the St. Joseph Site area were identified and mapped (see Figure 3.7-3). Table 3.7-5 lists the noise-sensitive receptors and their proximity to the site. The nearest residential area to the St. Joseph Site is adjacent to the northwestern site boundary.

Table 3.7-5. Noise-Sensitive Receptors in St. Joseph Site Area.

<table>
<thead>
<tr>
<th>Receptors within 0.5 miles of St. Joseph Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7 – Jewish Hospital Medical Center Northeast</td>
</tr>
<tr>
<td>S31 – Covenant Classical Academy</td>
</tr>
<tr>
<td>S36 – Strayer University Louisville campus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptors within 0.5 - 1.0 miles of St. Joseph Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S35 – Kayfield Academy</td>
</tr>
<tr>
<td>S38 – Joseph E. Stopher Elementary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptors 1.0 - 2.0 miles of St. Joseph Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9 – Confederate Cemetery</td>
</tr>
<tr>
<td>C10 – Flat Rock Cemetery</td>
</tr>
<tr>
<td>P24 – Berrytown Park</td>
</tr>
<tr>
<td>S32 – Pewee Valley Junior Academy</td>
</tr>
<tr>
<td>S33 – St. Aloysius School</td>
</tr>
</tbody>
</table>
Figure 3.7-3. St. Joseph Site Area Noise-Sensitive Receptors.
3.7.2.3 Existing Zorn Avenue Facility

The Zorn Avenue location is generally consistent with an urban or suburban setting. As such, the predominant noise sources in the area include mobile sources (such as personal and commercial vehicles) and stationary sources (such as heating, ventilation, and air conditioning units attached to buildings). Vehicle traffic and associated noise is heaviest along I-71 (north of site) and Zorn Avenue (east of site).

Noise-sensitive land uses in the Zorn Avenue campus area were identified and mapped (see Figure 3.7-4). Table 3.7-6 lists the noise-sensitive receptors and their proximity to the Zorn Avenue site. The nearest residential area to the Zorn Avenue site is adjacent to the western and southern site boundary.

Table 3.7-6. Noise-Sensitive Receptors in Zorn Avenue Site Area.

<table>
<thead>
<tr>
<th>Receptors within 0.5 miles of Zorn Avenue Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 - Louisville VAMC</td>
</tr>
<tr>
<td>P1 - Louisville Champions Park</td>
</tr>
<tr>
<td>P2 - Louisville Water Tower Park</td>
</tr>
<tr>
<td>R1 - Ramada Louisville North</td>
</tr>
<tr>
<td>S1 - Webster University Louisville</td>
</tr>
<tr>
<td>S2 - St. Leonard Catholic School</td>
</tr>
<tr>
<td>Receptors within 0.5 - 1.0 miles of Zorn Avenue Site:</td>
</tr>
<tr>
<td>L3 - Louisville Free Public Library - Crescent Hill Branch</td>
</tr>
<tr>
<td>P3 - Thurman Hutchins Park</td>
</tr>
<tr>
<td>P4 - Carrie Gaulbert Cox Park</td>
</tr>
<tr>
<td>P12 - Bingham Memorial Park</td>
</tr>
<tr>
<td>Receptors within 1.0 - 2.0 miles of Zorn Avenue Site:</td>
</tr>
<tr>
<td>C1 - St. Anthony's Eastern Cemetery (IN)</td>
</tr>
<tr>
<td>C2 - Cave Hill Cemetery</td>
</tr>
<tr>
<td>L2 - Barr Library</td>
</tr>
<tr>
<td>P5 - Perrin Family Park (IN)</td>
</tr>
<tr>
<td>P6 - Wathen Park (IN)</td>
</tr>
<tr>
<td>P7 - Memorial Park (IN)</td>
</tr>
<tr>
<td>P8 - Eva Bandman Park</td>
</tr>
<tr>
<td>P10 - Breslin Park</td>
</tr>
<tr>
<td>P11 - Clifton Park</td>
</tr>
<tr>
<td>P13 - Cherokee Park</td>
</tr>
<tr>
<td>R2 - Legacy Hotel and Conferences</td>
</tr>
<tr>
<td>S3 - Ewing Lane Elementary (IN)</td>
</tr>
<tr>
<td>S4 - Bridgepoint Elementary (IN)</td>
</tr>
<tr>
<td>S5 - Parkview Middle School (IN)</td>
</tr>
<tr>
<td>S6 - Eastlawn Elementary (IN)</td>
</tr>
<tr>
<td>S7 - Maple Elementary (IN)</td>
</tr>
<tr>
<td>S8 - Washington School</td>
</tr>
<tr>
<td>S9 - Kentucky School for the Blind</td>
</tr>
<tr>
<td>S10 - Breckenridge Franklin Elementary</td>
</tr>
<tr>
<td>S11 - Barret Traditional Middle School</td>
</tr>
<tr>
<td>S12 - Southern Baptist Theological Seminary</td>
</tr>
<tr>
<td>S13 - Field Elementary</td>
</tr>
<tr>
<td>S14 - Sacred Heart Academy</td>
</tr>
<tr>
<td>S15 - Holy Spirit School</td>
</tr>
<tr>
<td>S16 - Chenowith Elementary</td>
</tr>
<tr>
<td>S30 - Second Presbyterian School</td>
</tr>
</tbody>
</table>
Figure 3.7-4. Zorn Avenue Site Area Noise-Sensitive Receptors.
3.8 Land Use

Land use is described by land activities, ownership, and the governing entities’ management plans. Local zoning defines land use types and regulates development patterns.

3.8.1 Regulatory and Policy Framework

VA guidance addresses various aspects of siting and designing different types of VA health care facilities including land use sustainability, compatibility, and constraints. Consideration is given to local land use planning and zoning ordinances even if VA is not legally required to comply with them.

3.8.1.1 VA Guidance

The VA Site Development Design Manual (VA 2013) addresses a wide range of issues, and incorporates contemporary practices such as low-impact development and green building principles (LEED – Leadership in Energy and Environmental Design) into the design of VA facilities. This manual addresses sustainability, stormwater management, energy and water conservation, linkages to adjacent and proximal uses, solar orientation, pedestrian and bike paths, various benefits of and approaches to site landscaping, and other topics.

The VA Sustainable Locations Program (VA 2012) is the directive that facilitates compliance with the implementing instructions in planning sustainable federal facility locations (CEQ 2011). The implementing instructions and VA directive require a balanced consideration and evaluation of land use, the built environment, cost, security, mission need, and competition on facility location decision-making. Even though this directive was issued after VA conducted its site selection process that resulted in evaluating Alternatives A and B in this EIS, VA believes that the site selection process was consistent with the four principles of sustainable federal locations, as outlined in the directive. The four principles include: (1) advance local and regional planning goals; (2) seek location efficient sites (e.g., pedestrian friendly, accessible to public transit, businesses and services); (3) maximize use of existing resources; and (4) foster protection of the natural environment. VA spent significant effort early in the site selection process to study the feasibility of options that fully embody major elements of the sustainable principles: rebuilding at the existing Zorn Avenue campus, development at a new downtown location and some combination of the two. VA’s public advertisement for expressions of interest was open to both developed and undeveloped sites, where the original intent for undeveloped sites was to find the best suited greenfield site where public transit access, existing utility infrastructure, proximity to amenities, current land use and potential for environmental impact were all important considerations in site evaluations and ratings.

3.8.1.2 Local Land Use Planning and Zoning

The Cornerstone 2020 Comprehensive Plan represents the vision of Louisville and Jefferson County for a more livable, attractive, mobile, efficient, and environmentally sensitive community (LMG 2000). The Cornerstone 2020 plan guides the use of land and protection of natural resources, and encourages economic growth while enhancing the character of neighborhoods (LMG 2000). The plan created 11 “form districts” as a further delineation of zoning, which govern the pattern and form of development within the delineated district.

The Land Development Code (LMG 2006) is the compilation of regulations to implement the goals and objectives within the Cornerstone 2020 Comprehensive Plan. The Land Development Code contains
several requirements related to zoning, form districts, land use, building and site design, transportation, landscaping, and signage.

Hospitals, clinics, and other medical facilities are defined by the Land Development Code as “conditional uses.” These types of facilities may be allowed in any zoning or form district provided the use is compatible with the Cornerstone 2020 Comprehensive Plan and applicable form district development codes (LMG 2006).

VA considers local planning and zoning requirements in the design of new facilities, and works with state and local officials on building plans and inspections, etc., to the extent possible. However, as a federal agency, VA is not held to local building code requirements. Federal uses and buildings are exempt from local zoning requirements. This is based on the Supremacy Clause in the U.S. Constitution and has been upheld by case law. While complete pre-emption was amended to a limited extent in 40 U.S.C. § 3312, which requires a federal agency to consider a locality’s zoning laws, and state or local officials may make recommendations concerning measures necessary to meet local zoning ordinances, a federal agency is not required to comply with the local requirements under federal law (40 U.S.C. § 3312(e)).

3.8.2 Current Conditions

3.8.2.1 Brownsboro Site

The Brownsboro Site is vacant and undeveloped. The updated Cornerstone 2020 Comprehensive Plan land use map shows the site as Public Used and Owned and Semi-Public. Historic land use was a farmstead and agricultural fields. The farm buildings were removed and the fields have been fallow since approximately 2005. Adjacent land uses include single-family residential to the east and south, commercial business to the north and east, and industrial use (interstate and state road right of way) to the west and north.

The Brownsboro Site is zoned as a planned development (designated as PD in Figure 3.8-1) district (LOJIC 2015). Adjacent zoning includes right of way to the west, single-family residential (R-4 at 4.84 dwellings per acre and R-5 at 7.26 dwellings per acre) to the east and south, and commercial (C-1, C-2) to the north. The site is located in a town center (TC) form district, which is typically a compact area with a mixture of moderately intense land uses, including retail, office, service, entertainment, institutional, governmental, and public services (LMG 2000, 2006). These zoning designations are shown in Figure 3.8-1.

A planned development district promotes efficient and economic uses of land, diversifies and integrates new development that is compatible with existing development, and is consistent with the applicable form district (LMG 2006). The planned development zoning of the Brownsboro Site was to accommodate a proposed development (The Midlands) that was reported to have included 117 condominiums, 192 apartments, a 150-room six-story hotel, restaurants, offices, and 119,500 square feet of retail space (Courier-Journal 2007).

The Louisville Metro Planning and Design Services issued VA a waiver (Amendment to Certificate of Land Use Restriction) in April 2012 from the recorded land use restriction that was previously placed on the Brownsboro property in 2006. Pursuant to Article VI, Clause 2 of the U.S. Constitution (Supremacy Clause), the waiver certifies that the Binding Elements previously placed on the approved Planned Development District (Midlands development, Docket No. 9-15-06) do not apply to VA for any government purposes, including a VA hospital/medical center (Bills, 2012).
3.8.2.2 St. Joseph Site

The St. Joseph Site is vacant and undeveloped, but its current use is agricultural. The updated land use map for the Cornerstone 2020 Comprehensive Plan shows the site as Public Used and Owned and Semi-Public. Adjacent land uses include single- and multiple-family residential to the west and east, commercial businesses to the east and south, public use to the north, vacant land to the east, and industrial use (interstate right of way) to the west. A large portion of the commercial land use area to the east and south is undeveloped.

The site is zoned as R-4 (single-family residential at 4.84 dwellings per acre) (LOJIC 2015). Adjacent zoning includes R-4 and R-6 (multiple-family residential at 17.42 dwellings per acre) to the east, R-7 (multiple-family residential at 34.8 dwellings per acre) to the west, and planned employment center (PEC) to the south. The site is split by two form districts – suburban workplace (SW) encompasses the western and southern parts of the site, and neighborhood (N) encompasses the northeastern part of the site. The suburban workplace form district is typically a large-scale industrial and employment center buffered from potentially incompatible adjacent land uses (LMG 2000, 2006). The neighborhood form district is typically a compact residential area integrated with public spaces such as parks, schools, and shops at certain intersections to serve the neighborhood (LMG 2000, 2006). These zoning designations are shown in Figure 3.8-2.

![Figure 3.8-1. Zoning Designations, Brownsboro Site.](image-url)
Figure 3.8-2. Zoning Designations, St. Joseph Site.
3.8.2.3 Existing Zorn Avenue Facility

The Zorn Avenue Site is occupied by the existing Robley Rex VAMC. The Cornerstone 2020 Comprehensive Plan updated land use map shows the site as Public Used and Owned and Semi-Public. Adjacent land uses to the west, east, and south are single- and multiple-family residential. A narrow band of commercial use (currently undeveloped) is to the north between the VAMC and the interstate right of way (industrial use).

The site is zoned as R-1 (single-family residential at 1.08 dwellings per acre) (LOJIC 2015), even though it is occupied by the VAMC. Adjacent zoning includes single-family residential (R-5) to the east, multiple-family residential (R-7) to the west and south, and office/residential (OR-3) to the south. The site is located in a neighborhood (N) form district, which is a compact residential area integrated with public spaces such as parks, schools, and shops at certain intersections to serve the neighborhood (LMG 2000, 2006). The zoning designations are shown in Figure 3.8-3.

![Figure 3.8-3. Zoning Designations, Zorn Avenue Site.](image-url)
3.9 Floodplains and Wetlands

A floodplain is the low-lying area adjacent to a river or stream that is periodically subject to flooding. The Federal Emergency Management Agency (FEMA) identifies areas predicted to be inundated by the 100-year and 500-year flood events and establishes special management and/or construction requirements for these areas.

A wetland is an area that is characterized by hydric soils and wetland hydrology and supports hydrophytic vegetation. The U.S. Army Corps of Engineers (USACE) regulates development in wetlands.

The National Coastal Zone Management Program provides the basis for protecting, restoring, and responsibly developing diverse coastal communities and resources. The State of Kentucky does not contain any coastal zones governed by the program (NOAA 2012). Coastal zones are not discussed further in this EIS.

The region of influence for the evaluation of floodplains and wetlands consists of the project site.

3.9.1 Regulatory and Policy Framework

Development in floodplains is regulated through the National Flood Insurance Program administered by FEMA and managed through mutual agreements with local governments. The program regulates development in special flood hazard areas to prevent flooding, protect human health and safety, and minimize property damage caused by flooding. Special flood hazard areas are those areas subject to inundation by the one percent annual chance flood (commonly referred to as the 100-year flood). FEMA models the flooding potential within communities and delineates special flood hazard zones (collectively referred to as the 100-year floodplain) and other flood areas, which are published on Flood Insurance Rate Maps (FIRMs). Development within designated flood-prone areas is locally regulated by the Louisville-Jefferson County Metro Government Floodplain Management Ordinance (Title XV: Land Usage, Chapter 157: Floodplain Management Ordinance) (AmLegal 2015).

Federal agencies are required to avoid or minimize actions that could adversely affect floodplains (Executive Order 11988, Floodplain Management). The VA Site Development Design Manual (VA 2013) provides direction for planning, siting, and designing VA facilities. The manual states that when siting a facility, floodplain functions should be protected by avoiding or limiting development within the 100-year floodplain. Development in floodplains should be limited to open spaces and recreation areas first, parking areas second, and structures only if absolutely necessary.

Development in wetlands is regulated under the Clean Water Act as administered by USACE, and by farmland conservation programs administered by the Natural Resources Conservation Service. Filling wetlands is regulated primarily to avoid damage to aquatic environments and to prevent degradation of water quality. Three indicators (hydric soil, hydrophytic vegetation, and wetland hydrology) must be present during some portion of the growing season to define an area as a wetland within the regulatory jurisdiction of the USACE. Although not all-encompassing, the National Wetland Inventory (NWI) maintained by the U.S. Fish and Wildlife Service provides location information on possible wetlands. Not all wetlands shown on the NWI would meet the criteria required to delineate a regulated wetland. Federal agencies are required to avoid filling or modifying wetlands to the extent practicable (Executive Order 11990, Protection of Wetlands). Section 404 of the Clean Water Act regulates the discharge of dredge or fill material into waters of the U.S., which includes wetlands.
3.9.2 Current Conditions

3.9.2.1 Brownsboro Site

The Brownsboro Site is generally level with an elevation of approximately 585 to 595 feet above mean sea level (AMEC 2014). The site is located in Flood Zone X (outside the 500-year flood zone) (FEMA FIRM Panel 21111C0029E; FEMA 2014). There is minimal flood risk with no rivers, streams, or other surface water bodies on the site. Figure 3.9-1 depicts the flood hazard areas in the vicinity of the Brownsboro Site.

There are no wetland areas identified by the NWI on the site (FWS 2015). The absence of wetland areas is consistent with a recent wetland delineation (TTL 2012a), which concluded that no wetlands are present at the Brownsboro Site. Figure 3.9-2 depicts the wetland areas identified by the NWI in the vicinity of the Brownsboro Site.

3.9.2.2 St. Joseph Site

The St. Joseph Site topography is undulating, but relatively level in its central and southern portions, with an elevation of approximately 740 to 750 feet above mean sea level (VA 2012). The site is located in Flood Zone X (outside the 500-year flood zone) (FEMA FIRM Panels 21111C0021E and 21111C0034E; FEMA 2014). There is minimal flood risk with no rivers or significant streams on the site. Figure 3.9-3 depicts the flood hazard areas in the vicinity of the St. Joseph Site.

One potential wetland area (approximately 0.18 acres) is identified by the NWI in the northern portion of the site (FWS 2015). A recent wetland delineation (TTL 2012b) identified three potential wetland areas onsite (W1 – approximately 0.08 acres, W2 – approximately 0.15 acres, and W3 – approximately 0.10 acres) and one offsite wetland area adjacent to the southwestern boundary. Figure 3.9-4 depicts the wetland areas identified by the NWI and the previous wetland delineation in the vicinity of the St. Joseph Site.

3.9.2.3 Existing Zorn Avenue Facility

The existing Zorn Avenue VAMC campus is in an area of moderate topographic relief with areas of significant relief (steep slopes) that prohibit additional development. The site elevation in the developable portion of the site is approximately 520 to 530 feet above mean sea level. The site is primarily located in Flood Zone X (outside the 500-year flood zone), although some areas in the northeastern portion of the site within drainages are located in the 100-year and 500-year flood zones (FEMA FIRM Panel 21111C0027E; FEMA 2014). There is minimal flood risk for the developable portion of the site. Figure 3.9-5 depicts the flood hazard areas in the vicinity of the existing Zorn Avenue facility.

There are no wetland areas identified by the NWI on the Zorn Avenue campus (FWS 2015). Figure 3.9-6 depicts the wetland areas identified by the NWI in the vicinity of the site.
Figure 3.9-1. Location of Flood-Prone Areas in Brownsboro Site Vicinity.
Figure 3.9-2. Location of Wetland Areas in Brownsboro Site Vicinity.
Figure 3.9-3. Location of Flood-Prone Areas in St. Joseph Site Vicinity.
Figure 3.9-4. Location of Wetland Areas in St. Joseph Site Vicinity.
Figure 3.9-5. Location of Flood-Prone Areas in Zorn Avenue VAMC Vicinity.
Figure 3.9-6. Location of Wetland Areas in Zorn Avenue VAMC Vicinity.
3.10 Socioeconomics

This section describes the existing physical environment and regulatory framework related to population, housing, employment, and income. In addition to general socioeconomic information, this section includes general discussions about property values and crime.

Socioeconomics are described using demographic and employment measures, as these measures influence the local economy and housing demand.

3.10.1 Regulatory Framework

There are no federal standards relating to socioeconomics that apply to VA, and no state or local requirements to address. The regulatory framework for addressing socioeconomics is in the context of the human environment referred to in NEPA and defined by the CEQ regulations implementing NEPA. Economic or social effects will be discussed in an EIS when interrelated with the natural and physical environment (40 CFR 1508.14).

3.10.2 Current Conditions

For the purposes of this analysis, current socioeconomic conditions are described by geographic areas that depend on the data set. The study area for socioeconomics consists of the Louisville-Jefferson County, Kentucky-Indiana Metropolitan Statistical Area (Louisville MSA). Other geographic areas used to describe socioeconomic conditions include the Louisville-Jefferson County Metro Government (Louisville Metro) and the State of Kentucky.

In 2003, the Jefferson County, Kentucky government merged with that of its largest city and county seat, the City of Louisville, forming a new entity referred to as the Louisville-Jefferson County Metro Government. All small cities within Jefferson County became part of the new Louisville Metro government while retaining their city governments, as well as the remaining unincorporated areas within Jefferson County. Prior to the merger, Louisville was the 65th largest city in the United States. Since the merger, the metro area represents the 18th largest U.S. city and the 43rd largest MSA. Thus, statistics provided herein are for the Louisville Metro area and not for individual cities or unincorporated areas because of the government merger.

An MSA has at least one urbanized area of 50,000 or more population, plus adjacent territory that has a high degree of social and economic integration with the core, as measured by commuting ties (OMB 2013). The Louisville MSA encompasses eight counties in Kentucky and five counties in southern Indiana. The U.S. Office of Management and Budget defines the Louisville MSA as including Bullitt, Henry, Jefferson, Meade, Oldham, Shelby, Spencer, and Trimble counties in Kentucky; and Clark, Floyd, Harrison, Scott, and Washington counties in Indiana. The State of Indiana is included in this analysis for comparative purposes because five counties within the Louisville MSA are located in that state.

The information relating to population, housing, and employment is derived from the U.S. Census Bureau 2010 Decennial Census, which is the most recent comprehensive source of data. Labor force and unemployment statistics are from the U.S. Bureau of Labor Statistics.

3.10.2.1 Population

The catchment (service area) for the Robley Rex VAMC encompasses 35 counties in Kentucky and Indiana. Population estimates for the area are summarized in Table 3.10-1. The existing VAMC on Zorn
Avenue and the proposed replacement sites (Brownsboro and St. Joseph) are located within Louisville Metro, which has a total estimated population of 768,000 in 2015 (an approximate 10.7 percent increase from 2000). Data for Louisville Metro projects an increase in total population of 23.4 percent between 2000 and 2035. Between 2000 and 2035, the projected rate of population growth for Louisville Metro is less than that of Louisville MSA (36.8 percent), but similar to that of the State of Kentucky (25.3 percent). Overall the geographic area with the slowest projected rate of population growth is the State of Indiana (at 19.2 percent).

Table 3.10-1. Historical, Current, and Projected Population.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Population</th>
<th>Change 2000-2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Area</td>
<td>2000</td>
<td>2010</td>
</tr>
<tr>
<td>Louisville Metro</td>
<td>693,604</td>
<td>741,096</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>869,306</td>
<td>959,091</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>4,041,769</td>
<td>4,339,367</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>6,080,485</td>
<td>6,483,802</td>
</tr>
</tbody>
</table>

VA recognizes that the greatest potential for adverse impact would occur on the residential communities that lie in the immediate vicinity of both alternative locations. Local population data are provided for the population up to a 3.0-mile radius (further broken into 0.5-mile and 1.0-mile increments) of both the Brownsboro site and St. Joseph site as an additional comparison point. The population data are from the U.S. Census Bureau data (American Community Survey 2010-2014) and totals were generated using an EPA population screening tool. The results are as follows (EPA 2017a and b):

- Population within 0.5-mile radius of Brownsboro property: 3,536
- Population within 1 mile radius of Brownsboro property: 7,941
- Population within 3-mile radius of Brownsboro property: 73,187
- Population within 0.5 mile radius of St. Joseph property: 4,035
- Population within 1 mile radius of St. Joseph property: 8,476
- Population within 3-mile radius of St. Joseph property: 42,947

The three mile radius captures the neighboring communities at Brownsboro who have expressed significant concern about potential impacts to their local residents. For the Brownsboro site, these include, but are not limited to, the communities of Crossgate (2015 population of 270), Graymoor-Devondale (2,922), Old Brownsboro Place (393), Northfield (1,008), Windy Hills (2,348), Glenview Manor (191) and Indian Hills (2,868). For the St. Joseph site, these include the communities of Anchorage (2,172), Worthington Hills (1,597), Pewee Valley (1,615), Crestwood (4,705), and Orchard Grass (1,836) (US Census Bureau 2017).

3.10.2.2 Veteran Population

The Veteran population in the Louisville catchment area for the fiscal year (FY) ending September 30, 2014 (FY 2014) was 150,061 Veterans. Table 3.10-2 shows the projected Veteran population through FY 2024 by the sectors in the catchment area, along with the percent change over this time period. The
population projections are those developed by VA’s National Center for Veteran Analysis and Statistics; these projections of county-level Veteran population changes are the basis for VA’s nationwide services and facilities planning. This analysis was based on the most recent projections available, which were modeled using FY 2014 Veteran population estimates. Although the Veteran population is projected to increase across the 22 Kentucky counties by 4.69 percent by FY 2024, the Veteran population throughout the catchment area is projected to decrease overall by 8.30 percent. It should be noted that the portion of the total Veteran population that is enrolled to receive health care services, is projected to increase during this same time period (see Section 1.1.1).

Table 3.10-2. Projected Veteran Population in Louisville Catchment Area.

<table>
<thead>
<tr>
<th>Sectors in Louisville Catchment Area</th>
<th>Veteran Population</th>
<th>Change 2014-2024</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY 2014</td>
<td>FY 2019</td>
</tr>
<tr>
<td>Jefferson County, Kentucky</td>
<td>54,137</td>
<td>49,100</td>
</tr>
<tr>
<td>22 Kentucky counties</td>
<td>59,385</td>
<td>61,429</td>
</tr>
<tr>
<td>12 Indiana counties</td>
<td>36,539</td>
<td>33,958</td>
</tr>
<tr>
<td>Total</td>
<td>150,061</td>
<td>144,487</td>
</tr>
</tbody>
</table>

Source: VA 2015.

3.10.2.3 Housing

Table 3.10-3 shows the number of housing units and the occupancy rate in the study area between 2000 and 2010. A housing unit is defined by the U.S. Census Bureau as a house, apartment, mobile home or trailer, group of rooms, or a single room that is intended for occupancy as separate living quarters. The largest increase in housing units was in the Louisville MSA (486,939 to 559,837) at 15 percent. Louisville Metro and the states of Kentucky and Indiana had a similar increase of 10.1 and 10.4 percent between 2000 and 2010. Although the number of housing units increased across the study area, the occupancy rate of those units decreased slightly. The Louisville MSA had the highest 2010 occupancy rate at 91.9 percent and the State of Kentucky had the lowest rate at 89.2 percent. The State of Indiana had the largest change in occupancy with a decrease of 3.0 percent.

Table 3.10-3. Housing Units and Occupancy Rate

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Housing Units</th>
<th>Occupancy Rate</th>
<th>Percent Change 2000-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2010</td>
<td>2000</td>
</tr>
<tr>
<td>Louisville Metro</td>
<td>305,835</td>
<td>337,616</td>
<td>93.8%</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>486,939</td>
<td>559,837</td>
<td>93.9%</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>1,750,927</td>
<td>1,927,164</td>
<td>90.8%</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>2,532,319</td>
<td>2,795,541</td>
<td>92.3%</td>
</tr>
</tbody>
</table>

Table 3.10-4 shows the number of owner-occupied and renter-occupied housing units in the study area between 2000 and 2010. Both owner-occupied and renter-occupied units increased throughout the study area, with renter-occupied units increasing more than owner-occupied units. The Louisville MSA had the highest increase in both categories: 10.5 percent for owner-occupied units and 17.0 percent for renter-occupied units. Louisville Metro and the states of Kentucky and Indiana had similar increases of between 4.6 and 4.9 percent for owner-occupied housing units, and 13.0 to 15.8 percent for rented units.
Table 3.10-4. Owner-Occupied and Renter-Occupied Housing.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Owner-Occupied 2000</th>
<th>Owner-Occupied 2010</th>
<th>Renter-Occupied 2000</th>
<th>Renter-Occupied 2010</th>
<th>Percent Change 2000-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville Metro</td>
<td>186,387</td>
<td>194,997</td>
<td>100,625</td>
<td>114,178</td>
<td>+4.6% +13.5%</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>317,264</td>
<td>350,540</td>
<td>139,876</td>
<td>163,674</td>
<td>+10.5% +17.0%</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>1,125,397</td>
<td>1,181,271</td>
<td>465,250</td>
<td>538,694</td>
<td>+4.9% +15.8%</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>1,669,162</td>
<td>1,747,975</td>
<td>667,144</td>
<td>754,179</td>
<td>+4.7% +13.0%</td>
</tr>
</tbody>
</table>

The median values of housing and contract rent increased throughout the study area between 2000 and 2010. Table 3.10-5 shows the largest increase in median housing value to be in the Louisville Metro area ($103,000 to $145,900) at 41.7 percent. Indiana had the lowest increase in housing value ($94,000 to $123,000) at 30.4 percent. Louisville Metro and the State of Kentucky both had the highest increase in median contract rent at 35 percent, and Indiana had the lowest increase at 31 percent. The median value of housing in 2010 was higher in Louisville Metro than in the States of Kentucky and Indiana. The median contract rent amounts were similar across the study area.

Table 3.10-5. Median Value of Housing and Median Contract Rent.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville Metro</td>
<td>$103,000</td>
<td>$145,900</td>
<td>$494</td>
<td>$667</td>
<td>+41.7% +35.0%</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>N/A1</td>
<td>$147,0002</td>
<td>N/A1</td>
<td>N/A1</td>
<td>N/A1 N/A1</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>$86,700</td>
<td>$116,800</td>
<td>$445</td>
<td>$601</td>
<td>+34.7% +35.0%</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>$94,300</td>
<td>$123,000</td>
<td>$521</td>
<td>$683</td>
<td>+30.4% +31.0%</td>
</tr>
</tbody>
</table>

1 N/A = Not available (dataset for Louisville MSA was not published by U.S. Census Bureau for 2000 or 2010; median housing value was available for 2010-2012).
2 Dataset for 2010-2012.

Given the large number of residents that live within the immediate project vicinity (at both alternative locations) and the concerns about potential project impacts on property values, median housing prices specific to the local communities were also identified. Not surprisingly, many were found to be significantly higher than the median value found within the larger study area. In the Brownsboro area, the median home value (owner occupied units) for 2015 ranged from a low of $215,200 in Graymoor-Devondale community, to a high of $462,200 in Indian Hills. Similarly, for the St. Joseph site area, the median house value for nearby communities ranged from a low of $132,900 in Worthington Hills to a high of $618,200 in Anchorage. The closest community to an alternative site is the Community of Crossgate which lies within 500 feet of the Brownsboro property centerpoint; the median house value in Crossgate was $250,000 in 2015 (US Census Bureau 2017).

3.10.2.4 Income

Median household and per capita income from the 2000 and 2010 census is used as a benchmark to evaluate income levels in the study area. Household income is the sum of the income of people 15 years and older living in the household. A household includes related family members and any unrelated people (such as foster children, wards, or employees) who share the housing unit. A person living alone in a housing unit, or a group of unrelated people sharing a housing unit, is also counted as a household. Per
capita income is the mean income computed for every person in a particular group, and is derived by dividing the total income of a particular group by the total population.

Table 3.10-6 shows the change in estimated median income for the study area between 2000 and 2010. Median household and per capita income increased across the study area, generally in the range of 18.4 to 19.9 percent. The outliers included a slightly lower increase in median household income in Louisville Metro ($39,457 to $45,352) at 14.9 percent, and Indiana, which had the lowest increase overall at 7.3 percent for households and 11.8 percent for per capita income.

Table 3.10-6. Income Characteristics.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Median Household Income</th>
<th>Median Per Capita Income</th>
<th>Population Below Poverty Level</th>
<th>Percent Change 2000-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville Metro</td>
<td>$39,457</td>
<td>$45,352</td>
<td>$22,352</td>
<td>$26,473</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>$40,111</td>
<td>$47,798</td>
<td>$19,643</td>
<td>$23,539</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>$33,672</td>
<td>$40,062</td>
<td>$18,093</td>
<td>$21,706</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>$41,567</td>
<td>$44,613</td>
<td>$20,397</td>
<td>$22,806</td>
</tr>
</tbody>
</table>

Note: Values are expressed in inflation-adjusted dollars for the year of the dataset (2000 or 2010).
Source: Census 2003, 2010b.

Following Office of Management and Budget Statistical Policy Directive 14, the Census Bureau uses a set of dollar value thresholds that vary by family size and composition to determine who is in poverty. If a family's total money income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds are updated annually for inflation using the Consumer Price Index. The thresholds do not vary geographically. For comparison purposes, the U.S. Department of Health and Human Services publishes annual guidelines regarding poverty in the Federal Register. According to these guidelines, a household of four would be living under the poverty line if its 2015 income was $24,250 or less (HHS 2015).

Table 3.10-6 also shows the percent of the population living below the poverty level in the study area in 2000 and 2010. In 2010, the State of Kentucky had the highest rate of poverty within the study area at 19.0 percent. The percent of the population in poverty increased across the study area from 2000 to 2010, with the smallest increase in the State of Kentucky at 20.2 percent, and the largest increase in the State of Indiana at 61.0 percent.

3.10.2.5 Labor Force and Employment Characteristics

The U.S. Bureau of Labor Statistics defines the labor force as civilians (not active duty military or institutionalized persons) 16 years and older who are employed, seeking employment, or unemployed and available to work. Table 3.10-7 shows the number of persons who were employed compared to the size of the labor force in the study area from 2010 through 2014. The labor force grew slightly in the Louisville MSA and the State of Indiana, and decreased in Louisville Metro and the State of Kentucky between 2000 and 2014. The labor force grew between 2000 and 2013, and decreased across the study area in 2014. In Kentucky, the labor force began contracting in 2013. Despite the labor force becoming smaller in 2014, the Louisville MSA and the State of Indiana still recorded a growth rate between 2010 and 2014 of 0.6
and 2.2 percent, respectively. The total number of persons employed increased throughout the study area, with the State of Indiana having the largest increase at 6.8 percent and the State of Kentucky having the smallest increase at 1.1 percent. While the number of persons employed increased from 2010 to 2014, employment dropped slightly from 2013 to 2014 in Louisville Metro and the State of Kentucky, which is to be expected because the labor force also dropped in 2014.

Table 3.10-7. Labor Force and Employment.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Total Civilian Labor Force (Total) and Persons Employed (Empl)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Louisville Metro</td>
<td>376,774</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>622,909</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>2,051,327</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>3,163,948</td>
</tr>
</tbody>
</table>

¹ As of September of each year.
Source: BLS 2015; Census 2010b.

Table 3.10-8 shows the number of unemployed persons in the study area along with the unemployment rate from 2010 to 2014. The entire study area had sizeable decreases in the number of unemployed persons, along with improvements (decreases) in the unemployment rate. In 2010, the unemployment rate across the study area ranged from 9.4 to 9.7 percent, and decreased annually through 2014, when it ranged from 5.1 to 5.5 percent. Louisville Metro and the Louisville MSA had very similar decreases in unemployed persons and unemployment rate, ranging from 45.3 to 45.8 percent. The State of Indiana had the smallest decreases in number of persons employed and unemployment rate at 39.2 and 42.1 percent, respectively.

Table 3.10-8. Unemployment and Unemployment Rate.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Persons Unemployed (Unempl) and Unemployment Rate (Rate)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Unempl</td>
</tr>
<tr>
<td>Louisville Metro</td>
<td>36,415</td>
</tr>
<tr>
<td>Louisville MSA</td>
<td>58,556</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>196,583</td>
</tr>
<tr>
<td>State of Indiana</td>
<td>300,333</td>
</tr>
</tbody>
</table>

¹ As of September of each year.
Source: BLS 2015; Census 2010b.
Table 3.10-9 summarizes the number of establishments and employees across the different employment sectors. Employment in the State of Kentucky is largely centered on healthcare and social assistance, manufacturing, and retail trade, while the industries with the largest employment in Louisville Metro are transportation and warehousing and utilities, followed by retail trade, manufacturing, and accommodation and food services. Retail trade and healthcare and social assistance have the most establishments in the State of Kentucky, while in Louisville Metro the largest number of establishments is in the retail trade, professional, and healthcare and social assistance industries.

Table 3.10-9. Number of Establishments and Employees by Industry Sector for Louisville/Jefferson County Metro Government for 2013

<table>
<thead>
<tr>
<th>Industry Sector</th>
<th>Establishments</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Total</td>
<td>19,270</td>
<td>401,108</td>
</tr>
<tr>
<td>Agriculture, forestry, fishing, hunting</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>Mining, quarrying, oil and gas extraction</td>
<td>4</td>
<td>115</td>
</tr>
<tr>
<td>Utilities</td>
<td>30</td>
<td>1,000 to 2,499</td>
</tr>
<tr>
<td>Construction</td>
<td>1,374</td>
<td>15,406</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>699</td>
<td>40,532</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>1,160</td>
<td>19,358</td>
</tr>
<tr>
<td>Retail trade</td>
<td>2,699</td>
<td>41,944</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>519</td>
<td>45,000 to 49,999</td>
</tr>
<tr>
<td>Information</td>
<td>358</td>
<td>8,949</td>
</tr>
<tr>
<td>Finance and insurance</td>
<td>1,479</td>
<td>27,414</td>
</tr>
<tr>
<td>Real estate, rental and leasing</td>
<td>914</td>
<td>6,988</td>
</tr>
<tr>
<td>Professional, scientific, technical</td>
<td>2,168</td>
<td>22,426</td>
</tr>
<tr>
<td>Management of companies and enterprises</td>
<td>241</td>
<td>16,276</td>
</tr>
<tr>
<td>Administrative and support, waste management and remediation services</td>
<td>1,125</td>
<td>27,373</td>
</tr>
<tr>
<td>Educational services</td>
<td>243</td>
<td>8,495</td>
</tr>
<tr>
<td>Healthcare and social assistance</td>
<td>2,421</td>
<td>66,102</td>
</tr>
<tr>
<td>Arts, entertainment, recreation</td>
<td>292</td>
<td>5,975</td>
</tr>
<tr>
<td>Accommodation and food services</td>
<td>1,688</td>
<td>40,801</td>
</tr>
<tr>
<td>Other services (except public administration)</td>
<td>1,828</td>
<td>19,981</td>
</tr>
<tr>
<td>Industries Not Classified</td>
<td>22</td>
<td>0 to 19</td>
</tr>
</tbody>
</table>

Source: Census 2013.

Based upon a review of industry sector data for the Louisville MSA, the top ten industries (in 2013 based on employment numbers) were wholesale trade (29,915 employees), employment services (27,710 employees), real estate (27,165 employees), limited-service restaurants (24,732 employees), employment and payroll of local government/education (24,018 employees), hospitals (23,602 employees), full-service restaurants (23,559 employees), insurance carriers (20,637 employees), couriers and messengers (20,117 employees), and employment and payroll of local government/non-education (17,333 employees) (IMPLAN 2013).

3.10.2.6 VA Employment

As of FY 2015, there were 1,763 full-time equivalent VA employees, in addition to contractors, supporting the Robley Rex VAMC and the eight community-based outpatient clinics in the Louisville catchment area. There were another 400 (approximately) full time equivalent employees attached to the VBA Regional Office (some of whom telework). One full-time equivalent employee represents either one
full-time employee working 40 hours per week, or two or more part-time employees whose combined working hours total 40 hours per week.

3.10.2.7 Property Values

Property values (residential and commercial) in the Louisville Metro area have remained stable, and in many neighborhoods have been on a steady increase in recent years (Hancock 2015). The Jefferson County Property Valuation Administrator reports that the Louisville housing market has been increasing in recent years, and was the second fastest growing housing market in the U.S. in 2015 based on number of housing units built and sold. Commercial development in the Louisville Metro area has grown at a more moderate rate of three percent between 2014 and 2015. Generally, property values in the urban core areas of Louisville Metro have outpaced more suburban areas; however, property values have steadily increased since 2009 throughout the entire Louisville Metro (Hancock 2015).

3.10.2.8 Crime

Within the Louisville Metro area, crime statistics from the Louisville Metro Police Department, as reported in their 2014 Annual Report are provided in Table 3.10-10. Based upon this report, crime in the Louisville Metro area has decreased slightly from 2007 to 2014, from 5.42 percent Part I Crimes committed as a percentage of population (in 2007), to 4.79 percent of such crimes committed in 2014.

Table 3.10-10. Louisville Metro Area Crime Statistics from 2007 to 2014.

<table>
<thead>
<tr>
<th>Year</th>
<th>Property Crime</th>
<th>Part I Crime(^1)</th>
<th>Part I Crime(^1) as Percent of Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>29,569</td>
<td>33,800</td>
<td>5.42%</td>
</tr>
<tr>
<td>2008</td>
<td>29,417</td>
<td>33,723</td>
<td>5.36%</td>
</tr>
<tr>
<td>2009</td>
<td>26,908</td>
<td>30,676</td>
<td>4.86%</td>
</tr>
<tr>
<td>2010</td>
<td>29,551</td>
<td>33,285</td>
<td>5.22%</td>
</tr>
<tr>
<td>2011</td>
<td>31,949</td>
<td>36,035</td>
<td>5.42%</td>
</tr>
<tr>
<td>2012</td>
<td>28,606</td>
<td>32,595</td>
<td>4.89%</td>
</tr>
<tr>
<td>2013</td>
<td>28,780</td>
<td>32,424</td>
<td>4.83%</td>
</tr>
<tr>
<td>2014</td>
<td>28,351</td>
<td>32,400</td>
<td>4.79%</td>
</tr>
</tbody>
</table>

\(^1\) Part I Crime includes murder, rape, robbery, aggravated assault, burglary, larceny, and motor vehicle theft. Source: Louisville Metro Police Department 2014.
3.11 Community Services

Community services are provided by public agencies, non-profit agencies and organizations, and businesses to support and enhance the community. These services include health care (hospitals and clinics), emergency response (fire, rescue, medical), law enforcement, public schools, and consumer amenities (hotels and restaurants).

3.11.1 Regulatory and Policy Framework

Legislation, regulations, and plans govern local government responsibilities for providing community services. No state or local requirements related to community services apply to VA.

VA acts as its own building and fire protection official and “authority having jurisdiction”. As such, VA (and, as appropriate during construction, the U.S. Army Corps of Engineers) reviews fire code requirements during the design and construction phases of a project. VA (and/or USACE on its behalf) also requires the designer of record to coordinate with local municipal fire and emergency response agencies on key aspects of design to ensure that the facility will accommodate the critical needs of those responding agencies in an emergency. VA may include dedicated fire response services in project plans when required to support VA medical facilities operating 24 hours a day in communities without full-time, 24-hour fire response staff. A police and security unit is staffed 24 hours a day at VA facilities operating 24 hours a day to provide physical security and monitor law enforcement activities for the protection of persons and VA property. VA Handbook 0730 Security and Law Enforcement (VA 2014) requires the establishment of a support agreement with local law enforcement agencies.

3.11.2 Current Conditions

3.11.2.1 Brownsboro Site

Health Care

The Louisville metropolitan area is home to the nation’s largest collection of headquarters in nursing home, rehabilitation, assisted living, and home health administration (City of Louisville 2016a). Medical facility campuses of the Brook/Dupont, Baptist Health, and Norton Suburban hospitals and associated clinics are located approximately 3.5 miles south of the Brownsboro Site near the I-264/I-64 interchange. Medical facilities associated with the University of Louisville, Jewish Hospital, and Norton Hospital are located approximately 7.5 miles east of the Brownsboro Site near Chestnut Street and I-65 in “downtown” Louisville. The Baptist Health Urgent Care Clinic is located across Old Brownsboro Road north of the site in the Holiday Manor Center.

Emergency Response and Law Enforcement

The Brownsboro Site is within the Lyndon Fire Protection District. Lyndon Fire serves approximately 14 square miles with two engine companies and one ladder company operating from two stations located on New LaGrange Road and Westport Road. Both stations are approximately equal distance at less than three miles to the proposed entrance to the new VAMC. Lyndon Fire is staffed by both career and volunteer fire fighters (Lyndon Fire 2016). Career personnel (firefighters and emergency medical technicians) are on duty 24 hours a day at both stations and are supplemented by volunteer firefighters who provide additional emergency support whenever the need arises.
Louisville Metro Emergency Medical Service (EMS) is the primary 911 emergency and non-emergency medical care provider. It provides 24-hour emergency response and medical transport across 400 square miles of the urban, suburban, and rural communities throughout and surrounding Louisville (City of Louisville 2016b). Lyndon Fire responds with Louisville Metro EMS to provide emergency medical care within their service area prior to ambulance arrival.

The Brownsboro Site is located within the Eight Division of the Louisville Metro Police Department.

Public Schools

The Jefferson County Public Schools (JCPS) serve over 100,600 elementary through high school students in 173 schools (JCPS 2016). The elementary schools in the vicinity of the Brownsboro Site include Wilder Elementary on Herr Lane approximately one mile to the east and Dunn Elementary located on Rudy Lane approximately one mile to the west. Approximately one mile to the east of the Brownsboro Site is Kammerer Middle School located on Westboro Road and Ballard High School is located on Brownsboro Road. Enrollment data for the three school years from 2012-2015 indicate that Dunn Elementary has been at or near 98 percent program capacity and Wilder Elementary has been at approximately 92 percent program capacity (JCPS 2015). Enrollment at both the middle and high school has been at approximately 91 percent and 95 percent program capacity, respectively (JCPS 2015).

Consumer Amenities

The Brownsboro Site is located in a predominately suburban residential area with an adjacent business area of commercial, retail, and office uses. The business area supports over two dozen food and drink establishments, including fast food restaurants and table service dining restaurants. Many of the restaurants are within a short walking distance of the site. A larger selection of restaurants is located along Shelbyville Road approximately 2.5 miles south of the Brownsboro Site. Hotels are generally located along interstate interchanges near developed business areas. The nearest location of hotels to the Brownsboro Site is to the south approximately 3.5 miles near the I-264/I-64 interchange.

3.11.2.2 St. Joseph Site

Health Care

There are two medical services complexes very near the St. Joseph Site. The Jewish Hospital Medical Center Northeast is located at the southeast corner of the site near the Old Henry Road/I-265 interchange and the Baptist Health Eastpoint Hospital and Urgent Care Clinic are located west of the site across I-265. Other medical services complexes, including the Norton Brownsboro Hospital and Urgent Care Clinic and Kosair Medical Center Brownsboro, are located approximately six miles to the northwest from the St. Joseph Site near the I-265/I-71 interchange.

Emergency Response and Law Enforcement

The St. Joseph Site is within the Middletown Fire Protection District. Middletown Fire operates with four engine companies (three reserve/volunteer) and three ladder companies from three fire stations located on Urton Lane, Shelbyville Road, and Factory Lane (Middletown Fire 2016). Station #3 on Factory Lane is less than one-half mile from the proposed entrance to the new VAMC. Middletown Fire is staffed by both career and volunteer fire fighters (Middletown Fire 2016). Career personnel (firefighters and emergency medical technicians) are on duty 24 hours a day at the stations and are supplemented by volunteer firefighters who provide additional emergency support.
Louisville Metro EMS is the primary 911 emergency and non-emergency medical care provider. It provides 24-hour emergency response and medical transport throughout the Louisville area, including the St. Joseph Site.

The St. Joseph Site is located within the Eight Division of the Louisville Metro Police Department.

Public Schools

The elementary school in the vicinity of the St. Joseph Site is Stopher Elementary on Aiken Road approximately two miles to the southeast. Crosby Middle School is located on Gatehouse Lane approximately seven miles to the southwest of the St. Joseph Site. Eastern High School is located on Old Shelbyville Road approximately five miles to the southwest. Enrollment data for the three school years from 2012-2015 indicate that the elementary and middle schools have been at approximately 93 percent and 95 percent program capacity, respectively, whereas the high school has averaged 98 percent program capacity (JCPS 2015).

Consumer Amenities

The St. Joseph Site is located in a suburban residential area separated from a large developed business area by I-265. A small business area located approximately one mile from the site supports about a dozen food and drink establishments. A larger selection of restaurants is located along Westport Road near the I-265 interchange approximately 3.5 miles east of the St. Joseph Site. Hotels are also located near this interchange.

3.11.2.3 Existing Zorn Avenue VAMC

Health Care

The nearest community medical services complexes to the Robley Rex VAMC are those associated with the University of Louisville, Jewish Hospital, and Norton Hospital. These facilities are located east of Robley Rex VAMC approximately 4.5 miles near Chestnut Street and I-65 in “downtown” Louisville.

Emergency Response and Law Enforcement

Robley Rex VAMC is located within the Louisville Fire District 4, which serves the east end of the city. District 4 operates from five fire stations with the nearest station to the VAMC being Engine 4 on Frankfort Avenue located approximately two miles to the south. Career personnel (firefighters and emergency medical technicians) are on duty 24 hours a day at all stations.

Louisville Fire responds to two to three fire alarms a year at Robley Rex VAMC (Trebuna 2016). Louisville Fire responded three times over the past year to smoke detector and water flow alarms; none resulted in any fires (O’Brien 2016).

Louisville Metro EMS is the primary 911 emergency and non-emergency medical care provider. It provides 24-hour emergency response and medical transport throughout the Louisville area. Robley Rex VAMC maintains a contract with an ambulance company for medical transport of Veterans to and from the VAMC (Trebuna 2016).
Robley Rex VAMC is located within the Fifth Division of the Louisville Metro Police Department. VA maintains its own 24-hour police and security unit to provide law enforcement and security services for the safety and well-being of patients, staff, and visitors at the Robley Rex VAMC. The VA has a support agreement with the Louisville Metro Police Department for assistance, as needed, with law enforcement situations that could occur at the Robley Rex VAMC.

Public Schools

The elementary schools in the vicinity of Robley Rex VAMC are Chenoweth Elementary on Brownsboro Road approximately two miles to the southeast and Field Elementary on Sacred Heart Lane approximately two miles to the south. Meyzeek Middle School is located on South Jackson Street approximately six miles to the southwest of the existing VAMC. Waggener Traditional High School is located on Hubbards Lane approximately five miles to the southeast. Enrollment data for the three school years from 2012-2015 indicate that the elementary schools have ranged from 81 to 94 percent program capacity, and the middle school has been at approximately 94 percent program capacity (JCPS 2015). The high school has been at approximately 58 percent program capacity (JCPS 2015).

Consumer Amenities

The Robley Rex VAMC is located in a suburban residential area with limited nearby businesses. Less than a half dozen food and drink establishments and a hotel are located north of I-71 approximately one mile from the VAMC. A larger selection of restaurants is located along Frankfort Avenue over two miles from the VAMC. Other hotels are located in the downtown Louisville area approximately four miles east of the VAMC.
3.12 Solid Waste and Hazardous Materials

Hazardous material is defined (49 CFR 171.8) as a substance or material that has been determined to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce. The term includes “hazardous substances, hazardous wastes, marine pollutants, elevated temperature materials, materials designated as hazardous in the Hazardous Materials Table (49 CFR 172.101), and materials that meet the defining criteria for hazard classes and divisions” in 49 CFR Part 173. Transportation of hazardous materials is regulated by the U.S. Department of Transportation (49 CFR Parts 105–180).

Hazardous materials can also be defined as any substance with special characteristics that poses a health or safety hazard to people, plants, or animals when released. Specific types of solid and hazardous materials identified and evaluated in this EIS include:

- Solid (municipal) waste – solid material discarded by a community, including excess food, containers and packaging, residential garden wastes, other household discards, and light industrial debris (Lindeburg 2001).
- Asbestos-containing materials – used in many building materials prior to 1989, including floor tiles, textured ceilings, heating pipe insulation, and structural fire protection insulation.
- Lead-based paint – used in building paints prior to 1978.
- Polychlorinated biphenyls (PCBs) – includes dielectric fluids, heat-transfer fluids, and hydraulic fluids. Although no longer manufactured in the U.S., PCBs remain in products still in use and in contaminated media from spills and previously contacted surfaces.
- Hazardous waste – specific wastes regulated by the Resource Conservation and Recovery Act (RCRA), including characteristic wastes (wastes exhibiting ignitable, corrosive, reactive, or toxic properties) and listed wastes (specifically identified process and chemical wastes).
- Regulated medical waste – includes disposable equipment, instruments, utensils, human tissue, laboratory waste, blood specimens, or other substances that could carry pathogenic organisms.
- Hazardous materials stored in aboveground and underground storage tanks.

The region of influence for the evaluation of solid waste and hazardous material impacts primarily includes the project site and offsite waste disposal locations.

3.12.1 Regulatory Framework

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (commonly known as Superfund), enacted in 1980, provides a federal mechanism for cleaning up uncontrolled or abandoned hazardous waste sites as well as accidents, spills, and other emergency releases of pollutants. CERCLA imposes a tax on hazardous substances to create a fund (Superfund) so that EPA can clean up abandoned sites when potentially responsible parties cannot be identified or located, or when potentially responsible parties fail to act (IHMM 2002). Releases of hazardous substances to the environment in excess of reportable quantities are required to be reported to the National Response Center.

In 1986, the Superfund Amendments and Reauthorization Act (SARA) reauthorized CERCLA to continue cleanup activities around the country (IHMM 2002). Title III of this reauthorization act expanded chemical reporting requirements and is also known as the Emergency Planning and Community Right-to-Know Act. Title III also required each state to appoint a state emergency response commission, which in turn divided states into emergency planning districts managed by a local emergency planning...
committee. Chemical use reports are made available to the public to aid in emergency planning and community awareness.

The Toxic Substances Control Act of 1976 provides a means to test, regulate, and screen all chemicals produced in or imported into the U.S. The Act has special provisions for the regulation of PCBs, asbestos, radon, lead-based paint, and dioxins (IHMM 2002).

Enacted in 1976, RCRA gave EPA the authority to regulate hazardous waste from “cradle-to-grave,” which includes the generation, transport, treatment, storage, and disposal of hazardous waste (IHMM 2002). RCRA also provides a framework for managing nonhazardous solid wastes. The law set forth an intent to promote conservation of resources through reduced reliance on landfilling (ACHMM 2000). In Kentucky, oversight of hazardous waste has been delegated to the Kentucky Energy and Environment Cabinet, Department for Environmental Protection, Division of Waste Management.

The 1984 amendments to RCRA, known as the Hazardous and Solid Waste Amendments, required that land disposal of hazardous waste be phased out (IHMM 2002). The amendments also increased EPA’s enforcement authority, provided more stringent hazardous waste management standards, and created a comprehensive underground storage tank program.

Through the 1975 Hazardous Materials Transportation Act and its regulations in 49 CFR, the U.S. Department of Transportation has authority over the safe transportation of hazardous materials. The regulation covers hazardous materials classification, hazard communication, packaging requirements, operational rules, and training (IHMM 2002).

Under the Pollution Prevention Act of 1990, preventing or reducing waste generation where it originates was made the national environmental policy of the U.S. The Act’s purpose was to focus attention on reducing pollution through changes in production, operation, and hazardous material selection.

The Atomic Energy Act of 1954 governs the use, possession, and disposal of source, special nuclear, and byproduct materials for civilian and military uses (IHMM 2002). Medical facilities that may use nuclear materials for medical imaging or research purposes are subject to the regulations of the Act.

Several VA directives and handbooks provide guidance for managing solid and hazardous materials and waste, including:

- VA Directive 0057, VA Environmental Management Program (January 15, 2010) – establishes environmental policies within VA.
- VA Directive 0059 and VA Handbook 0059, VA Chemicals Management and Pollution Prevention (May 25, 2012) – prescribes the goals, policies, roles and responsibilities, and major requirements for chemicals management within VA, including reducing or eliminating the quantity of hazardous chemicals and materials acquired, generated, used, or disposed to the extent possible. The guidance also requires development of a chemical management and pollution prevention plan.
- VA Directive 0062 and VA Handbook 0062, Environmental Compliance Management (January 10, 2012) – prescribes the goals, policies, roles and responsibilities, and major requirements for environmental compliance management and reporting within VA, including continual improvement of environmental compliance and optimization through robust environmental management systems.
• VA Directive 0063 and VA Handbook 0063, Waste Prevention and Recycling Program (October 17, 2011) – establishes waste prevention and recycling program policy within VA, promoting source reduction as the most important approach for meeting waste prevention and recycling goals.

3.12.2 Current Conditions

3.12.2.1 Brownsboro Site

The Brownsboro Site is currently unimproved vacant, grassy land. No evidence of petroleum products or hazardous materials has been identified at the site, and a Phase I environmental site assessment did not identify any recognized environmental conditions associated with the Brownsboro Site (VA 2012).

3.12.2.2 St. Joseph Site

The St. Joseph Site is currently unimproved farmland. No evidence of petroleum products or hazardous materials has been identified at the site, and a Phase I environmental site assessment did not identify any recognized environmental conditions associated with the St. Joseph Site (VA 2012).

3.12.2.3 Existing Zorn Avenue Facility

The Robley Rex VAMC is currently located at the Zorn Avenue site. VA (2009) reported the following instance of past environmental contamination at the site:

> **Report on Fuel Oil Spill, 22 March 1994, prepared by VA Medical Center.** This report documents the occurrence of the release of approximately 6,500 gallons of fuel oil in 1994. The fuel oil flowed from the boiler house to a sinkhole located approximately 200 feet south of the boiler house… The report further states the fuel oil that entered the sinkhole emerged at an off-site location about 1/3 mile west of the sinkhole, near the intersection of Lake Drive and Mellwood Avenue.

VA has no knowledge of any other incidences of onsite contamination at this location.

Solid Waste

Solid waste is routinely generated through operations at the Louisville VAMC. For FY 2013-2015, the Louisville VAMC generated the following amounts of solid waste (VA 2015):

- FY2013 – 522.27 tons
- FY2014 – 518.01 tons
- FY2015 – 513.28 tons

Corrugated cardboard is compacted onsite. Solid waste is collected and transferred by a third party and disposed at the Outer Loop Recycling & Disposal Facility (see Figure 3.12-1). The Outer Loop Recycling & Disposal Facility (currently managed by Waste Management of Kentucky, L.L.C.) covers 782 acres and is authorized to receive construction and demolition waste. The landfill accepts approximately 787,700 tons of solid waste annually, and has a remaining permitted capacity of approximately 56,430,100 cubic yards (approximately 48 years of projected life remaining) (WM 2014).
Figure 3.12-1. Outer Loop Recycling & Disposal Facility.
Medical Waste

Medical waste is routinely generated through operations at the Louisville VAMC. The facility uses a commercial system (San-i-Pak) to steam-sterilize regulated medical waste and sharps containers, which are then disposed of as municipal solid waste.

Hazardous Waste

The Louisville VAMC is classified as a RCRA small quantity generator of hazardous waste (EPA 2015). SQGs generate between 100 kilograms (220 pounds) and 1,000 kilograms (2,200 pounds) per month of hazardous waste. Additionally, small quantity generators may not accumulate more than 6,000 kilograms (13,200 pounds) of hazardous waste onsite at any time. All generated hazardous waste is contracted for transportation and disposal at authorized facilities. For FY 2014 and FY 2015, the Louisville VAMC generated the following amounts of hazardous waste (VA 2015):

- FY2014 – 6.14 tons
- FY2015 – 5.85 tons

Hazardous Materials

Hazardous materials stored and used in VA operations are tracked using a chemical inventory tracking system developed by the VA Center for Engineering and Occupational Safety and Health. Management of hazardous materials within VA is outlined in VA Directive 0059, VA Chemicals Management and Pollution Prevention.

Building Materials

Many uses of asbestos-containing materials were phased out or banned in a series of federal regulations from 1973 to 1990. Lead-based paint was used in many structures built or repainted before 1978. Due to the age of the facilities at the Louisville VAMC, asbestos-containing materials and lead-based paint are likely present in facility building materials.
This page intentionally left blank.
3.13 Transportation and Traffic

Transportation and parking address the roadway network and physical structures that move a population throughout a specific area. The availability of the transportation infrastructure and its capacity to support growth are generally regarded as essential to an area’s economic growth.

3.13.1 Regulatory and Policy Framework

The non-interstate roadway systems surrounding the three alternative sites are all under the jurisdiction of and maintained by the Kentucky Transportation Cabinet (KYTC). Interstate (I)-71, I-264, and I-265 are all maintained by KYTC, but are also under the oversight of the Federal Highway Administration. Factory Lane at the St. Joseph Site and Country Club Drive at the Zorn Avenue campus are both under the jurisdiction of and maintained by the Louisville Metro government.

Improvements to KYTC-maintained roadways are made through inclusion in the “Six Year Highway Plan,” which is developed into law by the Kentucky legislature and signed by the governor.

Internal circulation roads on the existing campus or on either the potential Brownsboro or St. Joseph sites are under the jurisdiction of and maintained by the VA.

3.13.2 Current Conditions

3.13.2.1 Brownsboro Site

The roadway network surrounding the Brownsboro Site includes the Watterson Expressway (I-264), US 42, and KY 22. The Brownsboro Site is located near the southeast corner of the Watterson Expressway and Brownsboro Road interchange (see Figure 3.13-1).

Watterson Expressway is a four-lane divided highway classified as an urban interstate in the project vicinity. It runs along the western boundary of the Brownsboro Site. US 42 (Brownsboro Road) is an undivided principal urban arterial with four basic lanes. KY 22 (Old Brownsboro Road) is a three-lane urban minor arterial. Access to the Brownsboro Site would be provided directly from KY 22 along the northern site boundary, which is intersected by a ramp split from eastbound I-264 to KY 22. Watterson Expressway, US 42, and KY 22 are part of the state system maintained by KYTC.

The interchange of Watterson Expressway with US 42 is classified as a compressed diamond. KYTC is designing an interchange congestion improvement project at this location (KYTC Item No. 5-804) in conjunction with widening I-264 from four to six lanes (KYTC Item No. 5-594). This reconstruction and widening project is planned for 2019 and will replace the diamond interchange. Five conceptual alternatives (single point urban interchange [SPUI], compressed diamond, double crossover diamond, split diamond, flyover) were studied, but the Interchange Modification Report (approved pending approval of the Categorical Exclusion document currently under review by the Federal Highway

Traffic conditions are often characterized in terms of the level of service, or LOS. The LOS is a qualitative assessment of a road network’s operating conditions, generally in terms of traffic speed, travel time or delays, congestion or maneuverability, interruptions, and convenience.

An LOS of A through C represents desirable (acceptable) conditions and D represents tolerable conditions.

Congestion and delays increase under LOS-E to a level that is considered at capacity, whereas LOS-F ranks as the least functional level of traffic movement and is considered serious congestion.

LOS-D is often considered an acceptable level of service for urban roadways like US 42, and LOS-D can also be considered acceptable when the cost to improve operations to LOS-C is prohibitive.
Administration) ultimately recommended a SPUI, which will reconfigure the interchange to operate with a single traffic signal and will more efficiently move traffic through the area.

Public transportation is provided to the Brownsboro Site by the Transportation Authority of River City (TARC). Route 15 services US 42 and KY 22 in the project area. Additionally, Express Routes 68 and 49 service US 42 and KY 22, respectively, in the project area.

Traffic data have been collected and analyzed for a number of studies of the roadways and interchanges in the vicinity of the Brownsboro Site. Various improvements have changed traffic patterns and network capacity, including the ramp split (slip ramp) that opened in late 2012 from Watterson Expressway at the US 42 eastbound off-ramp that provided a direct connection to KY 22.

The KYTC completed a traffic forecast and analysis of a number of different intersections for the Watterson Expressway (I-264) and US 42 interchange improvement project (KYTC 2016), which included anticipated traffic generated by the proposed VAMC. Since the completion of this forecast, the anticipated size of the VAMC has been reduced, thereby reducing the square-foot-based estimates of anticipated trips to the center. The 2016 KYTC forecast was used to complete an updated traffic impact study based on the currently proposed size of the VAMC (Palmer Engineering 2016; see Appendix B). The analysis methodology was consistent with KYTC policy. The traffic impact study evaluated AM and PM traffic conditions for the baseline 2015 conditions, including predictions of “level of service”, or LOS. LOS is a qualitative standard measurement that reflects the relative ease of traffic.
Figure 3.13-1. Study Area – Brownsboro Site.
flow on a scale of A to F, with free-flow rated as LOS-A, and congested conditions rated at LOS-F. The analysis concluded that signalized intersections at baseline capacity (2015) were operating at an acceptable LOS, except the intersection of US 42 at KY 22 / Northfield Drive during the morning peak travel time. Although the overall intersections were at an acceptable LOS, certain turn movements were operating at a less than acceptable LOS. Table 3.13-1 shows the existing 2015 LOS and delay at intersections near the Brownsboro Site for peak morning and evening traffic.

Table 3.13-1. Existing (2015) Level of Service and Delay at Signalized Intersections – Brownsboro Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS Delay (seconds)</td>
<td>LOS Delay (seconds)</td>
</tr>
<tr>
<td>US 42 at Rudy Lane</td>
<td>C 24</td>
<td>D 43</td>
</tr>
<tr>
<td>US 42 at I-264 southbound ramp</td>
<td>D 35</td>
<td>C 33</td>
</tr>
<tr>
<td>US 42 at I-264 northbound ramp</td>
<td>C 25</td>
<td>C 26</td>
</tr>
<tr>
<td>US 42 at KY 22 / Northfield Drive</td>
<td>E 69</td>
<td>D 40</td>
</tr>
<tr>
<td>KY 22 at ramp split</td>
<td>C 20</td>
<td>C 32</td>
</tr>
</tbody>
</table>

As part of the 2016 VA study (Appendix B), simulation models were created using VISSIM to model the interaction of closely spaced signals and how congestion at one signal impacts the upstream signals. VISSIM is a behavior-based, microscopic simulation model software package that provides a graphic and numeric representation of lane geometry, driver behavior, signal timing, and traffic volumes. From these simulation models, travel time data for various routes along the corridor were collected. Simulations were run 10 times to obtain an average travel time measurement for each selected route. Table 3.13-2 shows the existing 2015 travel time results for selected routes near the project site for peak morning and evening traffic.

Table 3.13-2. Existing (2015) Travel Time Results – Brownsboro Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM (minutes)</th>
<th>PM (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-264 eastbound to Lime Kiln Lane</td>
<td>3.2</td>
<td>4.6</td>
</tr>
<tr>
<td>I-264 westbound to Lime Kiln Lane</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>US 42 westbound to I-264 westbound</td>
<td>3.4</td>
<td>3.1</td>
</tr>
<tr>
<td>KY 22 to I-264 westbound</td>
<td>3.7</td>
<td>3.4</td>
</tr>
</tbody>
</table>

In the traffic study (Appendix B), the Brownsboro Site is referred to as the Midlands Site.

3.13.2.2 St Joseph Site

The roadway network surrounding the St. Joseph Site includes the Gene Snyder Freeway (I-265), Old Henry Road (KY 3084), LaGrange Road (KY 146), and Factory Lane. The St. Joseph Site is located along the east side of I-265 (Gene Snyder Freeway), between the Old Henry Road (KY 3084) and LaGrange Road (KY 146) interchanges (see Figure 3.13-2).

The Gene Snyder Freeway is a four-lane divided highway classified as an urban interstate. It runs along the western boundary of the St. Joseph Site, but does not provide direct site access. Old Henry Road is an urban minor arterial road and is five lanes wide in the vicinity of the I-265 interchange. East of Bush Farm Road, Old Henry Road changes to a two-lane urban collector road. LaGrange Road is a five-lane urban minor arterial road. Factory Lane is a two-lane, urban minor arterial road that is approximately 1.5 miles long and connects LaGrange Road to the west with Old Henry Road to the east. Access to the St. Joseph Site would be provided directly from Factory Lane along the northern site boundary.

Gene Snyder Freeway, LaGrange Road, and a portion of Old Henry Road are part of the state system maintained by KYTC. Factory Lane and a portion of Old Henry Road are maintained by the City of Louisville.
KYTC is currently designing an interchange congestion improvement project with Old Henry Road at I-265 (KYTC Item No. 5-474.00) as well as a widening and improvement project along Old Henry Road (KYTC Item No. 5-367.20) to increase capacity out to KY 362 (Ash Avenue). The 5-474.00 project will improve and lengthen turn lanes along Old Henry Road in the interchange vicinity, as well as improve the ramp terminals. The 5-367.20 project will realign and widen Old Henry Road to a three-lane section between Bush Farm Road and KY 362. The route will have one lane in each direction and a center turn lane. The realignment will eliminate the 90-degree curve and three-way stop with Factory Lane. The new route will provide better access to the interchange for vehicles traveling from Oldham County, Shelby County, and far eastern Jefferson County. Both projects are anticipated to begin construction in 2016.

Public transportation is not currently provided to the St. Joseph Site. The nearest access point is located at the Baptist Eastpointe Hospital complex (Route 31), across I-265 to the west of the site.

VA collected traffic data to complete a traffic analysis of specific intersections near the St. Joseph Site (BTM Engineering 2012, Palmer Engineering 2016). The data collection and analysis methodology were consistent with KYTC policy. The traffic impact study evaluated AM and PM conditions for the baseline 2015 conditions. The analysis concluded that signalized intersections at baseline capacity (2015) were operating at a less than acceptable LOS, except the intersections of Old Henry Road at Bush Farm Road and Old Henry Road at I-265 northbound ramp in the evening peak travel time. Even with the intersections that operate at an acceptable LOS, certain turn movements operate at a less than acceptable LOS. Table 3.13-3 shows the existing 2015 LOS and delay at intersections near the St. Joseph Site for peak morning and evening traffic.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (seconds)</td>
</tr>
<tr>
<td>Old Henry Road at I-265 Northbound Ramp</td>
<td>F</td>
<td>141</td>
</tr>
<tr>
<td>Old Henry Road at Bush Farm Road</td>
<td>E</td>
<td>60</td>
</tr>
<tr>
<td>LaGrange Road at Factory Lane</td>
<td>F</td>
<td>174</td>
</tr>
<tr>
<td>LaGrange Road at I-265 Southbound Ramp</td>
<td>E</td>
<td>75</td>
</tr>
</tbody>
</table>
As part of the 2016 VA Traffic Impact Study (see Appendix B), simulation models were created using VISSIM along the St. Joseph corridor to extract travel time data. Table 3.13-4 shows the existing 2015 travel time results for selected routes near the project site for peak morning and evening traffic.

3.13.2.3 Existing Zorn Avenue Facility

The roadway network surrounding the Zorn Avenue VAMC includes I-71, Zorn Avenue, and Country Club Drive. The campus is located to the south of the I-71 interchange with Zorn Avenue.

I-71 is a four-lane divided highway classified as an urban interstate. Zorn Avenue is classified as an urban minor arterial, connecting US 42 and I-71, and is a four-lane divided highway. Country Club Drive is a two-lane roadway classified as an urban local street. Access to the Zorn Avenue VAMC is provided by an entrance along Country Club Drive.

I-71 and Zorn Avenue are part of the state system maintained by KYTC. Country Club Drive is maintained by the City of Louisville.

TARC currently provides public transportation to the Robley Rex VAMC along Zorn Avenue. Route 15 operates along Zorn Avenue and provides direct access to the VAMC from Country Club Drive.

Traffic data were collected for a traffic analysis of specific intersections near the Zorn Avenue campus (see Appendix B). The data collection and analysis methodology were consistent with KYTC policy. The traffic impact study evaluated AM and PM conditions for the baseline 2015 conditions. The analysis concluded that signalized intersections at baseline capacity (2015) were operating at acceptable LOS, except the intersection of Zorn Avenue at the I-71 northbound ramp during the evening peak travel time. Although the overall intersections operate at an acceptable LOS, certain turn movements operate at a less than acceptable LOS. Table 3.13-5 shows the existing 2015 LOS and delay at intersections near the Zorn Avenue facility for peak morning and evening traffic.

Table 3.13-5. Existing (2015) Level of Service and Delay at Signalized Intersections – Existing Zorn Avenue Facility.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (seconds)</td>
</tr>
<tr>
<td>Zorn Avenue at I-71 northbound ramp</td>
<td>C</td>
<td>29</td>
</tr>
<tr>
<td>Zorn Avenue at Country Club Road</td>
<td>C</td>
<td>25</td>
</tr>
</tbody>
</table>

As part of the traffic study, simulation models were created using VISSIM along the Zorn Avenue corridor to extract travel time data. Table 3.13-6 shows the existing 2015 travel time results for selected routes near the VAMC campus for peak morning and evening traffic.

Table 3.13-6. Existing (2015) Travel Time Results – Existing Zorn Avenue Facility.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM (minutes)</th>
<th>PM (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southbound I-71 to VA</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Northbound I-71 to VA</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>VA to southbound I-71</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>VA to northbound I-71</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Figure 3.13-3. Study Area – Zorn Avenue (Existing Facility) Site.
Parking at the existing Zorn Avenue facility is limited to 1,200 spaces, with no place to expand. VA currently leases offsite parking locations and operates shuttle buses to transport patients and visitors from these satellite parking areas to the Zorn Avenue VAMC.
3.14 Utilities

Utilities are defined as services provided to the public, often but not always distributed by community-wide infrastructure. Specific utilities identified and evaluated in this EIS include:

- Water treatment and supply
- Wastewater treatment
- Electricity supply
- Heating supply (natural gas or heating oil)
- Communications (telephone and data)

The region of influence for the evaluation of utilities impacts includes the project site and associated utility corridors.

3.14.1 Regulatory and Policy Framework

Three Energy Policy Acts have been passed, which include provisions for conservation and energy development, use of alternative fuels, increased fuel economy requirements, biofuel development, and changes to indoor lighting, with grants and tax incentives for both renewable and non-renewable energy.

On March 19, 2015, the White House issued Executive Order 13693, Planning for Federal Sustainability in the Next Decade. This order stated that federal agencies should prioritize reducing energy use and cost, then on finding renewable or alternative energy solutions; propose greenhouse gas emission reduction targets; beginning in FY 2016, where life-cycle cost-effective, implement measures specified in the order related to building energy use, renewable energy sourcing, water use, decreasing fleet inventories and mobile source greenhouse gas emissions, use of recycled and sustainably produced materials; advance waste prevention and pollution prevention; and promote electronics stewardship. Agencies, including VA, were previously required to develop and implement strategic sustainability performance plans (SSPPs) in accordance with Executive Order 13514, which was revoked by Executive Order 13693. VA’s existing SSPP identifies sustainability goals and defines strategies for achieving these goals, consistent with VA’s Sustainability Management Policy. The SSPP includes goals for sustainable buildings, water use efficiency, greenhouse gas reductions, energy conservation and renewable energy usage, and use of recycled and sustainably produced materials (VA 2014).

3.14.2 Current Conditions

3.14.2.1 Brownsboro Site

As an unimproved parcel, the Brownsboro Site does not currently have any utility connections.

The Louisville Water Company (LWC) would supply domestic and fire protection water service to the Brownsboro Road site. There is an existing 12-inch water main in Brownsboro Road just north of the site, and an 8-inch main in the right of way for Carlmar Lane, which runs to the southeast corner of the site.

Louisville Gas and Electric (LG&E) provides electricity service to approximately 400,000 customers and natural gas service to approximately 321,000 customers in Louisville and surrounding areas (LG&E 2015). LG&E supplies the natural gas and electrical services to the area of the Brownsboro Road site. There is a point of connection for natural gas service along Brownsboro Road but there is no existing nearby electrical source capable of serving the site.
The Louisville and Jefferson County Metropolitan Sewer District (MSD) provides wastewater service to more than 270,000 customers (MSD 2012). MSD is the approval authority for the storm sewer system design for the Brownsboro Road site. The KYTC Department of Transportation has a storm drainage system along the Watterson Expressway, which would be the receiving stormwater system for discharges from the proposed VAMC.

MSD also supplies sanitary sewer service to the site. A location to connect to the sanitary sewer system is available just south of the southern site property line, near the southeast corner of the site, where there is an existing manhole within the Carlimar Lane right of way.

AT&T Kentucky provides telecommunications service in the Louisville area, including the Brownsboro Road area. However, as the Louisville area is a large metropolitan area, a great number of telephone, television, and internet providers service the area, allowing consumers a choice among service providers. Communications services are available throughout the area.

3.14.2.2 St. Joseph Site

As an unimproved parcel, the St. Joseph Site does not currently have any utility connections.

LWC can provide water supply to the St. Joseph Site, provided the domestic and fire prevention flow requirements do not exceed the capacities of the water mains. Requirements for specific system improvement would be determined when detailed plans and information are available. LWC stated that a private fire hydrant loop would likely be required for the St. Joseph Site.

MSD indicated the existing sanitary system and sanitary services for the St. Joseph Site would likely be adequate for the Proposed Action.

LG&E stated that an electrical service feed would come from the Old Henry Substation; however, a backup feed would have to come from a second transformer that has not been installed.

AT&T stated that telecommunication services can be provided to the site.

3.14.2.3 Existing Zorn Avenue Facility

The Louisville Water Company supplies water to the existing Louisville VAMC. Water is supplied via a 12-inch water main to the water supply tower. Water is then transferred to four 2,500-gallon tanks, and ultimately to the VAMC facility. The Louisville VAMC maintains a three-day water contingency supply. Water consumption at the Louisville VAMC has averaged approximately four million gallons per month (VA 2015).

Wastewater generated at the existing Louisville VAMC is treated by MSD. Wastewater generation at the Louisville VAMC has averaged approximately three million gallons per month.

Electricity service at the existing Louisville VAMC is provided by LG&E. The Louisville VAMC consumed 17,118,786 kilowatt-hours in FY 2013 and 17,596,715 kilowatt-hours in FY 2014 (VA 2015).

Facilities at the existing Louisville VAMC are primarily heated by natural gas. Natural gas service is provided by LG&E. The Louisville VAMC consumed 50,887,900 cubic feet of natural gas in FY 2013 and 51,847,200 cubic feet in FY 2014 (VA 2015). Over the past two years, LG&E has requested the
Louisville VAMC to halt natural gas usage in the boiler plant and use fuel oil reserves during extreme cold temperatures. The Louisville VAMC consumed 22,654 gallons of #2 fuel oil in FY 2015 (VA 2015).

AT&T currently provides communications service to the existing Zorn Avenue VAMC.
This page intentionally left blank.
3.15 Environmental Justice

Environmental justice applies to potential adverse environmental impacts disproportionately borne by minority or low income populations. Environmental justice includes protection from health and safety risks if the potential for such risks are driven by an environmental impact. Related to environmental justice is any disproportionate risk to children, regardless of minority or income status, from environmental health and safety impacts.

3.15.1 Regulatory and Policy Framework

3.15.1.1 Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations

Executive Order 12898 requires each federal agency identify and address, as appropriate, the disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations. The executive order is also intended to promote nondiscrimination in federal programs, policies, and activities that affect human health and the environment, and to provide minority and low-income communities with access to public information and public participation.

3.15.1.2 Council on Environmental Quality Guidance

The White House Council on Environmental Quality (CEQ) prepared Environmental Justice Guidance under the National Environmental Policy Act (CEQ 1997) for performing environmental justice analyses as part of the NEPA process. The guidance provides definitions, thresholds, and overall methodology for environmental justice analyses, including the following:

- **Minority.** Individuals who identify themselves as American Indian or Alaska Native, Hispanic or Latino, Asian, Black or African American, Native Hawaiian or Other Pacific Islander, some other race, or member of two or more races. For purposes of this EIS, the definition has been updated from the population groups listed in CEQ (1997) to include groups currently listed on the U.S. Census form.

- **Minority population.** Minority populations should be identified in a NEPA document where either (a) the minority population of an affected area exceeds 50 percent, or (b) the minority population percentage of the affected area is meaningfully greater than the minority population percentage in the general population or other appropriate unit of geographic analysis. For purposes of this EIS, “meaningfully greater” is defined as more than 10 percentage points higher than the general population of the geographic unit of the Louisville VAMC service area in the states of Kentucky and Indiana (although comparisons are also made to the geographic unit of the VAMC host State of Kentucky). For this EIS, the percentage of minorities within the affected area would have to be at least 10 percentage points greater than 20.7 percent (i.e., 30.7 percent) which is the percentage of minority population within the service area (see Table 3.1501 in Section 3.15.2). For comparison, the percentage of minorities in the state of Kentucky is 13.7 percent.

- **Low-income population.** Low-income populations in an affected area are identified based on the annual statistical poverty thresholds from the U.S. Census Bureau’s Population Estimates Program. For purposes of this EIS, a “low-income population” is defined similarly to a minority population in terms of meaningfully greater percentages of persons in the affected area.
3.15.1.3 Executive Order 13045: Protection of Children from Environmental Health Risks and Safety Risks

Under Executive Order 13045, each federal agency must identify and assess environmental health risks and safety risks that may disproportionately affect children, and ensure that its actions address disproportionate risks to children that result from environmental health risk or safety risks.

3.15.1.4 Interagency Environmental Justice Memorandum of Understanding and VA Strategy

In 2011, VA and 16 other federal agencies signed the Memorandum of Understanding on Environmental Justice and Executive Order 12898 (Holder et al. 2011). Combined, Executive Order 12898 and the Memorandum of Understanding:

- Require each covered and participating agency to “make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations.”
- Declare the continued importance of identifying and addressing environmental justice considerations in agency programs, policies, and activities as provided in Executive Order 12898.
- Renew the process for agencies to provide environmental justice strategies and implementation progress reports.
- Establish structures and procedures to ensure that the Environmental Justice Interagency Working Group operates effectively and efficiently.
- Require development or review/update of each agency’s environmental justice strategy.
- Require agencies to provide opportunities for the public to submit comments and recommendations relating to the agency’s environmental justice strategy, annual implementation progress reports, and ongoing efforts to incorporate environmental justice principles into its programs, policies, and activities.

The VA Environmental Justice Strategy is a dynamic framework intended to be a living document. This strategy was drafted as an initial step in an ongoing effort to ensure integration of environmental justice objectives into VA’s activities. VA has adopted the following three goals for its environmental justice strategy:

- Identify and address VA programs, policies, and activities that may have disproportionately high and adverse human health or environmental effects on minority, low-income, or tribal populations.
- Ensure transparent and accessible information sharing and promote public participation for programs, activities, and operations that have potential environmental justice implications.
- Identify areas to improve research and data collection methods.

3.15.2 Current Conditions

The affected area for identifying environmental justice populations based on minority and low-income status consists of the counties in the Louisville VAMC service area, which covers western Kentucky and southern Indiana (see Figure 1.1-1).
Data on populations of concern and poverty status for purpose of identifying minority and low-income composition in the affected area are from the 2010 U.S. Census. Poverty thresholds are updated annually for inflation by the U.S. Census Bureau and are used for calculating official poverty population statistics. The dollar value thresholds vary by family size and composition (adults and children), but do not vary geographically. The Census Bureau calculates a weighted average poverty threshold based on the relative number of families in each size and composition. The weighted average provides a general sense of the poverty level. For purposes of this EIS, the census categories of “all families” and “all people” are used, along with the weighted average poverty threshold for one and four persons.

3.15.2.1 Demographic Conditions: Louisville VAMC Service Area in Kentucky

Table 3.15-1 presents demographic data for each of the counties in the Louisville VAMC service area in Kentucky. No counties with minority populations greater than 50 percent are identified (Census 2010).

As shown in the table, minority persons in the Louisville VAMC service area in Kentucky are approximately 20.7 percent of the population. No counties in the service area have a minority percentage that is meaningfully greater (10 percentage points higher) than the service area in Kentucky, although Jefferson County comes close at 29.5%, and is meaningful greater compared to the percentage of minority persons in the State of Kentucky which is approximately 13.7 percent of the total population.

The number of children, defined in the U.S. Census as persons 18 years and younger, varies among the counties. The percentage of children in the total population in the Louisville VAMC service area and the State of Kentucky is fairly similar, both at approximately 24 percent.

<table>
<thead>
<tr>
<th>County</th>
<th>Total Population</th>
<th>Minority</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Persons</td>
<td>Percent Total Population</td>
<td>Number of Persons</td>
</tr>
<tr>
<td>Adair</td>
<td>18,656</td>
<td>1,101</td>
<td>5.9%</td>
</tr>
<tr>
<td>Breckinridge</td>
<td>20,059</td>
<td>923</td>
<td>4.6%</td>
</tr>
<tr>
<td>Bullitt</td>
<td>74,319</td>
<td>2,973</td>
<td>4.0%</td>
</tr>
<tr>
<td>Butler</td>
<td>12,690</td>
<td>508</td>
<td>4.0%</td>
</tr>
<tr>
<td>Carroll</td>
<td>10,811</td>
<td>1,232</td>
<td>11.4%</td>
</tr>
<tr>
<td>Edmonson</td>
<td>12,161</td>
<td>426</td>
<td>3.5%</td>
</tr>
<tr>
<td>Grayson</td>
<td>25,746</td>
<td>850</td>
<td>3.3%</td>
</tr>
<tr>
<td>Green</td>
<td>11,258</td>
<td>563</td>
<td>5.0%</td>
</tr>
<tr>
<td>Hancock</td>
<td>8,565</td>
<td>283</td>
<td>3.3%</td>
</tr>
<tr>
<td>Hardin</td>
<td>105,543</td>
<td>23,431</td>
<td>22.2%</td>
</tr>
<tr>
<td>Hart</td>
<td>18,199</td>
<td>1,420</td>
<td>7.8%</td>
</tr>
<tr>
<td>Henry</td>
<td>15,416</td>
<td>1,141</td>
<td>7.4%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>741,096</td>
<td>218,623</td>
<td>29.5%</td>
</tr>
<tr>
<td>Larue</td>
<td>14,193</td>
<td>1,093</td>
<td>7.7%</td>
</tr>
<tr>
<td>Meade</td>
<td>28,602</td>
<td>2,689</td>
<td>9.4%</td>
</tr>
<tr>
<td>Muhlenberg</td>
<td>31,499</td>
<td>2,205</td>
<td>7.0%</td>
</tr>
<tr>
<td>Nelson</td>
<td>43,437</td>
<td>3,953</td>
<td>9.1%</td>
</tr>
<tr>
<td>Ohio</td>
<td>23,842</td>
<td>1,311</td>
<td>5.5%</td>
</tr>
<tr>
<td>Oldham</td>
<td>60,316</td>
<td>6,514</td>
<td>10.8%</td>
</tr>
<tr>
<td>Owen</td>
<td>10,841</td>
<td>477</td>
<td>4.4%</td>
</tr>
<tr>
<td>Shelby</td>
<td>42,074</td>
<td>7,994</td>
<td>19.0%</td>
</tr>
<tr>
<td>Spencer</td>
<td>17,061</td>
<td>785</td>
<td>4.6%</td>
</tr>
</tbody>
</table>
Table 3.15-2 shows the percentage of individuals living below the poverty level in the Kentucky counties in the Louisville VAMC service area. Butler and Carroll Counties have persons living below the poverty level at a meaningfully greater percentage (10 percentage points higher) than the Louisville VAMC service area in Kentucky, and the percentage in Carroll County is also meaningfully higher than that for the State of Kentucky. The average percentage of persons living below the poverty level in the Louisville VAMC service area in Kentucky is somewhat, but not meaningfully, less than the state’s percentage.

Table 3.15-2. Poverty Information, Kentucky Counties in Louisville VAMC Service Area.

<table>
<thead>
<tr>
<th>County</th>
<th>Persons Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adair</td>
<td>19.8%</td>
</tr>
<tr>
<td>Breckinridge</td>
<td>18.2%</td>
</tr>
<tr>
<td>Bullitt</td>
<td>10.8%</td>
</tr>
<tr>
<td>Butler</td>
<td>27.3%</td>
</tr>
<tr>
<td>Carroll</td>
<td>32.1%</td>
</tr>
<tr>
<td>Edmonson</td>
<td>16.8%</td>
</tr>
<tr>
<td>Grayson</td>
<td>23.2%</td>
</tr>
<tr>
<td>Green</td>
<td>21.1%</td>
</tr>
<tr>
<td>Hancock</td>
<td>16.0%</td>
</tr>
<tr>
<td>Hardin</td>
<td>14.9%</td>
</tr>
<tr>
<td>Hart</td>
<td>25.9%</td>
</tr>
<tr>
<td>Henry</td>
<td>17.6%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>16.7%</td>
</tr>
<tr>
<td>Larue</td>
<td>17.9%</td>
</tr>
<tr>
<td>Meade</td>
<td>16.1%</td>
</tr>
<tr>
<td>Muhlenberg</td>
<td>21.2%</td>
</tr>
<tr>
<td>Nelson</td>
<td>17.3%</td>
</tr>
<tr>
<td>Ohio</td>
<td>22.2%</td>
</tr>
<tr>
<td>Oldham</td>
<td>6.5%</td>
</tr>
<tr>
<td>Owen</td>
<td>15.1%</td>
</tr>
<tr>
<td>Shelby</td>
<td>12.4%</td>
</tr>
<tr>
<td>Spencer</td>
<td>6.9%</td>
</tr>
<tr>
<td>Trimble</td>
<td>16.5%</td>
</tr>
<tr>
<td>Average for Louisville VAMC service area in Kentucky</td>
<td>16.3%</td>
</tr>
<tr>
<td>Kentucky</td>
<td>18.9%</td>
</tr>
</tbody>
</table>

Source: Census 2014.

3.15.2.2 Demographic Conditions: Louisville VAMC Service Area in Indiana

Table 3.15-3 presents demographic data for each of the counties in the Louisville VAMC service area in Indiana. No counties with minority populations greater than 50 percent are identified (Census 2010).
As shown in the table, minority persons in the Louisville VAMC service area in Indiana are approximately 8.4 percent of the population. No counties in the service area have a minority percentage that is meaningfully greater (10 percentage points higher) than the service area in Indiana. For comparison, the number of minority persons in the State of Indiana is approximately 18.5 percent of the total population.

The number of children, defined in the U.S. Census as persons 18 years and younger, varies among the counties. The percentage of children in the total population in the Louisville VAMC service area and the State of Indiana is fairly similar, both at approximately 24 to 25 percent.

Table 3.15-3. Populations of Concern, Indiana Counties in Louisville VAMC Service Area.

<table>
<thead>
<tr>
<th>County</th>
<th>Total Population</th>
<th>Minority</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Persons</td>
<td>Percent Total Population</td>
<td>Number of Persons</td>
</tr>
<tr>
<td>Clark</td>
<td>110,232</td>
<td>16,314</td>
<td>14.8%</td>
</tr>
<tr>
<td>Crawford</td>
<td>10,713</td>
<td>321</td>
<td>3.0%</td>
</tr>
<tr>
<td>Dubois</td>
<td>41,889</td>
<td>3,100</td>
<td>7.4%</td>
</tr>
<tr>
<td>Floyd</td>
<td>74,578</td>
<td>8,054</td>
<td>10.8%</td>
</tr>
<tr>
<td>Harrison</td>
<td>39,364</td>
<td>1,378</td>
<td>3.5%</td>
</tr>
<tr>
<td>Jackson</td>
<td>42,376</td>
<td>3,560</td>
<td>8.4%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>32,428</td>
<td>1,978</td>
<td>6.1%</td>
</tr>
<tr>
<td>Orange</td>
<td>19,840</td>
<td>694</td>
<td>3.5%</td>
</tr>
<tr>
<td>Perry</td>
<td>19,338</td>
<td>909</td>
<td>4.7%</td>
</tr>
<tr>
<td>Scott</td>
<td>24,181</td>
<td>701</td>
<td>2.9%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>10,613</td>
<td>297</td>
<td>2.8%</td>
</tr>
<tr>
<td>Washington</td>
<td>28,262</td>
<td>735</td>
<td>2.6%</td>
</tr>
<tr>
<td>Total for Louisville VAMC service area in Indiana</td>
<td>453,814</td>
<td>38,041</td>
<td>8.4%</td>
</tr>
<tr>
<td>Indiana</td>
<td>6,482,802</td>
<td>1,199,503</td>
<td>18.5%</td>
</tr>
</tbody>
</table>

Source: Census 2010.

Table 3.15-4 shows the percentage of individuals living below the poverty level in the Indiana counties in the Louisville VAMC service area. None have persons living below the poverty level at a meaningfully greater percentage (10 percentage points higher) than the Louisville VAMC service area in Indiana or the State of Indiana. The average percentage of persons living below the poverty level in the Louisville VAMC service area in Indiana is somewhat, but not meaningfully, less than the state’s percentage.

Table 3.15-4. Poverty Information, Indiana Counties in Louisville VAMC Service Area.

<table>
<thead>
<tr>
<th>County</th>
<th>Persons Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark</td>
<td>11.6%</td>
</tr>
<tr>
<td>Crawford</td>
<td>17.8%</td>
</tr>
<tr>
<td>Dubois</td>
<td>8.8%</td>
</tr>
<tr>
<td>Floyd</td>
<td>12.8%</td>
</tr>
<tr>
<td>Harrison</td>
<td>12.4%</td>
</tr>
<tr>
<td>Jackson</td>
<td>14.1%</td>
</tr>
<tr>
<td>Jefferson</td>
<td>15.3%</td>
</tr>
<tr>
<td>Orange</td>
<td>18.4%</td>
</tr>
<tr>
<td>Perry</td>
<td>12.7%</td>
</tr>
<tr>
<td>Scott</td>
<td>19.7%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>20.2%</td>
</tr>
</tbody>
</table>
3.15.2.3 Demographic Conditions: Within 3 Miles of Proposed Alternative A and Alternative B Locations

Because the potential impacts from construction and operation of the proposed project are most likely to be felt within the immediate vicinity of the project, the minority and low income populations were identified within a 3-mile radius from the Brownsboro and St. Joseph sites using EPA’s Environmental Justice (EJ) Screening Tool (available at the following Website: https://www.epa.gov/ejscreen/purposes-and-uses-ejscreen). The EJSSCREEN allows users to access high resolution environmental and demographic information for locations in the U.S. and compare their selected locations to the rest of the state (or EPA region or nation).

The tool applies a buffer around the project center point and aggregates appropriate portions of the Census Bureau block groups, weighted by population, to create a representative set of data for the entire ring area, recognizing variation and dispersion of the population in the block groups within it. A block group is an area defined by the Census Bureau that usually has in the range of 600-3,000 people living in it. The US is divided into more than 200,000 block groups.

The EJSSCREEN defines percent minority as the percent of individuals in a block group who list their racial status as a race other than white alone and/or list their ethnicity as Hispanic or Latino (i.e., all people other than non-Hispanic white-alone individuals). The word “alone” in this case indicates that the person is a single race, not multiracial. The demographic data are calculated from the Census Bureau’s American Community Survey data for the period 2010-2014 (as compared to the population data presented for the Louisville service area which is for 2010).

EJSSCREEN results for the replacement VAMC show that out of a total population of 73,187 living within a 3-mile radius of the Brownsboro site, 10,070 (14 percent) were minorities and 2,700 (8 percent) had an income of less than $15,000.

EJSSCREEN results for the replacement VAMC show that out of a total population of 42,947 living within a 3-mile radius of the St. Joseph site, 8,725 (20 percent) were minorities and 797 (5 percent) had an income of less than $15,000.

In addition, for comparison purposes because those minority and low income populations living closest to the site are more likely to experience the most adverse effects (e.g., noise, traffic congestion, air pollution, etc.), EJSSCREEN results were also obtained for those populations living closer in within a 1-mile radius of each site. Out of a total population of 10,491 living within a 1-mile radius of the Brownsboro site, 1,033 (10 percent) were minorities and 120 (4 percent) had an income of less than $15,000; and out of a total population of 8,476 living within a 1-mile radius of the St. Joseph site, 1,533 (18 percent) were minorities and 92 (3 percent) had income less than $15,000 (EPA 2017a and b).

VA compared these percentages to those found in the VAMC service area and in the State as a whole (see Table 3.15-5). The percentage of low income population are significantly less than the state and service area averages. The percentages of minority population are slightly higher than the state average for

<table>
<thead>
<tr>
<th>County</th>
<th>Persons Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington</td>
<td>15.2%</td>
</tr>
<tr>
<td>Average for Louisville VAMC service area in Indiana</td>
<td>13.5%</td>
</tr>
<tr>
<td>Indiana</td>
<td>15.5%</td>
</tr>
</tbody>
</table>

Source: Census 2014.
Brownsboro (3-mile radius) and St. Joseph (1 and 3-mile radius), however, none are meaningful greater (by more than 10 percentage points).

Table 3.15-5. Comparison of Minority and Low Income Populations within 1 and 3 Mile Radius.

<table>
<thead>
<tr>
<th>Comparison Area</th>
<th>Minority</th>
<th>Low Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brownsboro 3-mile radius</td>
<td>14%</td>
<td>8%</td>
</tr>
<tr>
<td>Brownsboro 1-mile radius</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>St. Joseph 3-mile radius</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>St. Joseph 1-mile radius</td>
<td>18%</td>
<td>3%</td>
</tr>
<tr>
<td>State of Kentucky</td>
<td>13.7%</td>
<td>18.9%</td>
</tr>
<tr>
<td>Average for Louisville service area in Kentucky</td>
<td>20.7%</td>
<td>16.3%</td>
</tr>
<tr>
<td>Average for Louisville service area in Indiana</td>
<td>18.5%</td>
<td>15.5%</td>
</tr>
</tbody>
</table>

Source: EPA 2017
3.16 Other Past, Present, and Reasonably Foreseeable Projects

In accordance with 40 CFR 1508.7, “cumulative impact” is the impact on the environment which results from the incremental impact of the action when added to the other past, present and reasonably future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions.

This section identifies other past, present and reasonably foreseeable projects and actions that are considered in the evaluation of cumulative impacts. Employment in Jefferson County is projected to increase by 65 percent by 2035 (KIPDA 2014). Some of Jefferson County’s highest employment growth is forecast throughout the county in areas in and near downtown Louisville, the UPS Worldport Hub, Bluegrass Commerce Park, Hurstbourne Green, Eastpoint Business Center, and Old Brownsboro Crossing (KIPDA 2014). The Old Brownsboro Crossing and Eastpoint Business Center are in the vicinity of the Brownsboro Site and St. Joseph Site, respectively. Data sources for identifying projects for cumulative impact analysis include:

- City of Louisville, Economic and Business Development
- Kentuckian Regional Planning and Development Agency
- Kentucky Transportation Cabinet
- Providence Point Commercial, LLC
- Courier Journal

The following projects in the Louisville area were identified:

- Providence Point proposed development of 312 residential condominiums and 138,000 square feet for mixed-use retail and offices, an approximately 19-acre area of currently unimproved land located approximately ¼ mile directly east of the Brownsboro Site along Herr Lane.

- Thorntons, Inc. Store Support Center: Warehouse facility of 92,500 square feet on Old Henry Road that will employ 110 people in eastern Jefferson County. Estimated start date 2016 (construction began January 2016).

- Ford Motor Company Kentucky Truck Plant: Expansion of and upgrades to the truck plant located off Gene Snyder Freeway and west of Old Lagrange Road; creation of 2,000 additional jobs (500 added in late 2015 and additional 1,500 expected by summer 2016); previously employed approximately 4,400 people. Start date 2016.

- Residential development north of Factory Lane: Ball Homes Inc. is developing a 406-home addition on the north side of Factory Lane, just across the road from the St. Joseph Site (Alternative B).

- Reconstruct I-264 (Henry Watterson Expressway) interchange at US 42 (Brownsboro Road). Estimated to open to public in 2020.

- Widen US 42 (Brownsboro Road) from 5 to 7 lanes from I-264 (Henry Watterson Expressway) to Seminary Drive. Estimated open to public year: 2021.

- Resurface KY 22 (Brownsboro Road) from Ten Broeck Way to Seminary Drive to US 42. Estimated to open to public in 2015.

- Widen KY 2050 (Herr Lane) from KY 1447 (Westport Road) to KY 22 (Brownsboro Road) adding turn lanes and operational improvements as necessary to reduce congestion and improve safety. Estimated to open to public in 2020.
• Intersection improvement on KY 22 (Brownsboro Road) at KY 2050 (Herr Lane) and the entrance to Ballard High School. Estimated to open to public in 2018.

• Reconstruct/widen I-264 (Henry Watterson Expressway) from Westport Road (KY 1447) to I-71 to 3 lanes in each direction. Estimated to open to public in 2021.

• Widen KY 1447 (Westport Road) from 2 to 5 lanes (5th lane will be a center turn lane) from Murphy Lane to Collins Lane. Estimated to open to public in 2021.

• Improve KY 1447 (Westport Road) intersections at Herr Land and Washburn Road. Estimated to open to public in 2020.

• Capacity improvements to the I-264 (Henry Watterson Expressway) eastbound off-ramp and construction of the slip ramp connecting to Old Brownsboro Road (KY 22). Completed October 2012.

• Reconstruct I-71 and I-264 interchange. Phase I design.

• Widen KY 146 (LaGrange Road) from 2 to 5 lanes (5th lane will be a center turn lane) from Factory Lane to Reamers Road. Estimated to open to public in 2021.

• Widen English Station Road from 2 to 3 lanes (3rd lane will be a center turn lane) to accommodate anticipated congestions from the Old Henry Road/I-265 interchange. Estimated open to public year: 2016.

• Add a left turn lane to northbound exit ramp from I-265 at Old Henry Road interchange. Estimated to open to public in 2017.

• Extend improvements on Old Henry Road to 3 lanes with left turn lanes from near the I-265 interchange to Ash Avenue (KY 362). Estimated to open to public in 2030.

• Construct new Ohio River Bridge in the I-265 Corridor.

• Widen I-265 (Gene Snyder Freeway) from 4 to 6 lanes from I-64 to I-71. Planning phase 2040.
4.0 ENVIRONMENTAL CONSEQUENCES

This chapter presents the evaluation of the alternatives’ direct, indirect, and cumulative environmental impacts. The sections of this chapter are organized by resource, with information presented in the same sequence as in Chapter 3 to provide a logical flow for the discussion. The baseline for determining potential impacts is the current condition described in Chapter 3. Each resource-specific section (Sections 4.1 through 4.15) provides (1) the evaluation criteria by which the analysis determined whether there is an adverse impact to the resource, and (2) the analysis of impacts to that resource from each of Alternatives A, B, and C. Potential impacts from each alternative are discussed separately for construction (short-term impacts) and operation (long-term impacts). The Impacts Summary Table in the Executive Summary summarizes the impacts of each alternative. Section 4.16 presents the cumulative impacts analysis. Section 4.17 discusses the proposal’s potential for generating substantial controversy (required by the Department of Veterans Affairs’ [VA’s] interim National Environmental Policy Act [NEPA] guidance). Sections 4.18 through 4.20 provide specific analyses required by the Council on Environmental Quality’s (CEQ’s) NEPA regulations: unavoidable adverse impacts, the relationship between short-term uses of the environment and the maintenance and enhancement of long-term productivity, and irreversible or irretrievable commitments of resources.

Impact Terminology

An impact is defined as a modification of the existing environment that is brought about by an outside action. The terms effect and impact as used in this document are synonymous and could be beneficial or adverse.

Adverse impacts are defined in terms of context and intensity. Context relates to environmental circumstances at the location of the impact and its immediate vicinity, as well as other interests that are potentially affected. Intensity refers to the severity or extent of the impact or magnitude of change from existing conditions. Impact intensity is used in the determination of the severity and magnitude of an impact, and helps determine whether mitigation is needed to lessen the impact. The following terms are among those that are applied in this environmental impact statement (EIS) to describe the intensity of adverse impacts:

- None/no impact: No change from current conditions.
- Negligible impacts: No measurable or discernible change from current conditions.
- Minor impacts: Slight but detectable; there would be a small change. Effects are generally short-term and highly localized.
- Moderate impacts: Readily apparent; there would be a noticeable change that could result in major short-term or moderate long-term impacts.
- Major impacts: Large and highly noticeable; long-term or permanent.

The duration of the impact is important in evaluating its intensity:

- Short-term impacts occur only for a short time after implementation of a management action; for example, construction noise impacts from construction activities would be considered short-term in nature.
- Long-term impacts occur for an extended period after implementation of a management action; for example, operational noise during facility operations would be a long-term impact, as it would last for as long as the facility is in operation.
Direct effects are caused by the action and occur at the same time and place as the action. Indirect effects are caused by the action and occur later in time or further in distance, but are still reasonably foreseeable (40 Code of Federal Regulations (CFR) 1508.8).

Cumulative impacts are those effects resulting from the incremental impacts of an action when combined with other past, present, and reasonably foreseeable future actions (regardless of which agency or person undertakes such actions) (40 CFR 1508.7). Cumulative impacts could result from individually insignificant but collectively significant actions taking place over a period of time.

Mitigation Measures

The CEQ NEPA regulations (40 CFR 1508.20) state that mitigation includes:

(a) Avoiding the impact altogether by not taking a certain action or parts of an action.
(b) Minimizing impacts by limiting the degree or magnitude of the action and its implementation.
(c) Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
(d) Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
(e) Compensating for the impact by replacing or providing substitute resources or environments.

The alternatives identified in this EIS include compliance with federal, state, and local regulatory requirements; best management practices incorporated into an alternative; and additional VA-proposed mitigation measures. The record of decision (ROD) for an EIS binds an agency to implement specific mitigation commitments stated in the ROD. In addition, compliance with regulatory requirements is enforced by the respective regulatory agency. For example, compliance with air emissions permit conditions would be enforced by the Louisville Metro Air Pollution Control District (APCD). Where relevant for a particular alternative, mitigation measures summarized in Chapter 5 could reduce adverse impacts identified in this chapter.
4.1 Aesthetics

4.1.1 Evaluation Criteria

Federal agencies must consider local requirements for aesthetic qualities of new building construction (40 United States Code 619(b)), even though local governments cannot regulate activities of the federal government on federally owned land without a clear statutory waiver to the contrary. This concept is based upon the Supremacy Clause (Article VI) of the U.S. Constitution. (VA actions on non-federal land are subject to the regulatory jurisdiction of the landowner, including local plans or codes pertaining to aesthetics.)

An aesthetic or visual impact is the creation of an intrusion or noticeable contrast to the landscape that affects visual character or scenic quality. A visual effect can be considered adverse if an action obstructs what most observers would consider a scenic view or blocks or detracts from a significant feature of the landscape. The introduction of a visual element that is incompatible, out of scale, in great contrast, or out of character with the surrounding area can be adverse visual impact. An action that eliminates open space can have an adverse effect on aesthetic or visual appeal of the area. Together with observers’ attitudes, expectations, and perspectives, the extent of obstruction and the compatibility of introduced features within established views determine the subjective importance or intensity of the visual impact.

The Cornerstone 2020 Comprehensive Plan’s requirements related to the scenic corridor designation for Brownsboro Road are discussed in Section 4.1.2, specific to the Brownsboro Site.

For purposes of this evaluation, an impact would be considered adverse if the action creates a visual contrast with the surrounding area or is not compatible with the land development codes for building setbacks and heights, landscaping, and exterior lighting.

4.1.2 Alternative A: Brownsboro Site

4.1.2.1 Construction

Construction activities would temporarily affect the visual quality of the Brownsboro Site and adjacent area because of the presence of heavy equipment and unfinished stages of site preparation and building construction. The visual quality impacts would change over the course of the phased construction as each task is completed, progressing toward being negligible in the later stages as landscaping is completed and work focuses on the interiors of completed structures.

Outdoor construction activities would cease at sunset so there would be no impact from the use of construction equipment lights for nighttime lighting. Security lighting would be required for construction staging areas, which would have a minor impact relative to existing nighttime light levels. Security lighting throughout the construction site would be directed downward to minimize light trespass onto adjacent residential areas.

4.1.2.2 Operation

The VA medical center (VAMC) campus buildings would vary in height, with the central utility plant and laundry at approximately 56 feet, the east bar buildings (VBA, inpatient, and medical center administration) at approximately 102 feet (4 stories and rooftop mechanical penthouse), the west bar building (outpatient, diagnostic, and treatment units) at approximately 162 feet (5 stories and rooftop mechanical and electrical penthouses), the south parking garage at approximately 83 feet (5 levels and rooftop solar panels), the north parking garage at approximately 115 feet (8 levels and rooftop solar
panels), and the water tower at approximately 160 feet. Figure 4.1-1 shows the proposed dimensional layout of the buildings on the Brownsboro Site.

![Figure 4.1-1. Dimensional View and Layout of VAMC Buildings on the Brownsboro Site.](image)

The VAMC campus buildings would create a noticeable contrast to the existing landscape and would have an adverse visual effect because the buildings would obstruct or detract from what some observers would consider a scenic view, or would introduce visual elements that some observers would consider out of scale or character with the surrounding area. Development of the site and change in the visual appearance would be expected by observers, as demonstrated by the previous landowner’s development plan (mixed commercial, retail, and multi-family residential). Figures 4.1-2 through 4.1-4 simulate the change to the visual character of the landscape from the presence and appearance of the VAMC campus buildings. The extent of the impact would depend on the dominance and noticeability of the buildings in the landscape and the observers’ attitudes and perspectives regarding the presence and purpose of the buildings. The extent of the aesthetic impact from the contrast to the existing landscape would range from negligible to major, depending on the observer. The visual contrast to residents living in the neighborhoods immediately adjacent to the proposed VAMC at Brownsboro (e.g., Crossgate and Graymoor-Devondale) would represent a significant change from the existing landscape. Residents have expressed concerns regarding the introduction and appearance of the proposed structures, at imposing heights, which are not in character with the residential area at Brownsboro and would block out sunlight and air flow to their one and two story homes.
Figure 4.1-2. View to North from Carlimar Lane at Intersection with Bedford Lane (existing on left, Alternative A on right).

Figure 4.1-3. View to South from Northfield Drive between Intersections with U.S. Highway 42 and Old Brownsboro Road (existing on left, Alternative A on right).

Figure 4.1-4. View to West within Crossgate Subdivision from Haverhill Road at Intersection with Warrington Way (existing on left, Alternative A on right).
The exterior façade of the buildings would be designed to meet the goal of Leadership in Energy and Environmental Design Silver certification for healthcare facilities. The design elements serve a dual purpose of energy performance and aesthetics. The aesthetic design emulates the form and flow of military ribbons, while the design function provides sun control for thermal comfort and energy efficiency. The site layout and building façade of a VA facility are intended to promote a healing environment for the Veterans, and thus incorporate elements are deliberately intended to be perceived as calming, soothing, safe, restorative, clean, simple, and dignified. The acceptance of the visual appearance of the exterior façade would vary by observer based on attitude and perspective regarding the purpose of the buildings. The extent of the aesthetic impact from the visual appearance of the building façade would range from negligible to major, depending on the observer. Figures 4.1-5 through 4.1-7 present proposed architectural renderings of the exterior façade.

Figure 4.1-5. View from North of Veterans Benefits Administration Building and North Parking Garage.
Building setbacks and perimeter fences for the campus must conform to physical security and antiterrorism design requirements for mission critical VA facilities. The minimum setback for security is
50 feet from the property boundary, but wider setbacks would be designed to also address Land Development Code requirements for transitional zones (200 feet), noise (250 feet), and landscaping (35 feet). Perimeter fencing along the property boundaries would be nine-foot black metal pickets. Landscaping plans and materials (refer to Figure 2-6 and Section 2.2.1.10 Site Landscaping) address security requirements, aesthetics, noise, and privacy.

The Cornerstone 2020 Comprehensive Plan’s scenic corridor designation of Old Brownsboro Road subjects new development to specific setbacks, buffering, and landscape requirements along the road frontage. The Land Development Code establishes the minimum building setback for non-residential use at 40 feet from the property boundary adjacent to the scenic corridor (LMG 2006). Within that 40-foot setback is a buffer of 25 feet where landscaping must be installed. The building setbacks, transitional zones, and landscape buffers for the VAMC campus exceed the minimum Land Development Code requirements (refer to Section 4.8 Land Use) for a conditional use; therefore, the site layout adequately addresses aesthetic concerns associated with the scenic corridor designation of Old Brownsboro Road and would have no impact on the scenic corridor.

The building setbacks and landscape buffers for the VAMC campus at the Brownsboro Site more than meet the minimum Land Development Code requirements that address aesthetic issues associated with a “conditional use” (the land use category that includes hospitals and medical facilities) within a “town center form district.” A form district is a further zoning delineation with regulations governing the pattern and form of development; town centers are “typically compact areas with a mixture of moderately intense uses that are developed around an identifiable core”. Therefore, the site layout would have no visual impact that conflicts with these aspects of this land use designation.

 Portions of the VAMC facility would stand up to 42 feet taller than the maximum (120 feet) for a town center form district, and another portion would exceed by up to 38 feet the height specified for the transition zone of this form district. Based on the visual impact criteria related to the zoning requirements, the building heights are identified as an adverse aesthetic impact. However, in developing the design concept for the site, VA determined that, on balance, the greater setbacks and more open space afforded by a somewhat taller facility resulted in an overall site design that was more visually pleasing compared to lower heights with a larger building footprint on the site. The visual impact of the building height can be considered negligible to major, depending on the observer. In the case of the residential neighborhoods located closest to the proposed VAMC campus, however, the visual impact would be considered potentially significant. See Section 4.8 for further analysis of potential impacts specific to zoning and land use.

VA has incorporated various elements into the design to help further reduce impacts to the viewshed and adjacent neighborhoods, including the planting of trees (as landscape buffers), installation of a perimeter fence and lighting designs to minimize glare. To provide additional screening between the VA facilities and the residential neighborhoods on the east and south sides, a combination of shade and ornamental trees would be planted to form a row within the perimeter fence. Exterior lighting of the campus would be controlled to minimize light trespass but would be designed to meet physical security requirements. The lighting system must provide sufficient illumination for perimeter surveillance cameras, sensitive inner areas, and access control points. The roadway lighting would provide enough intensity so that vehicle drivers, pedestrians, and bicyclists can identify directional signage, access gates, queuing lanes, and curbs. Light fixtures (or luminaires) would use the cutoff design that directs light downward and minimizes glare. Fixtures for the security fence would be a similar style as adjacent neighborhood fixtures provided that cutoff design requirements are met. The exterior lighting would be generally consistent with the Land Development Code; therefore, no aesthetic impacts associated with light trespass would be expected.
4.1.3 Alternative B: St. Joseph Site

4.1.3.1 Construction

Impacts from construction at the St. Joseph Site would be similar to the impacts described for the Brownsboro Site.

4.1.3.2 Operation

The layout and size of the VAMC campus buildings on the St. Joseph Site would be similar to those described for Alternative A. Figure 4.1-8 shows the possible dimensional layout of the buildings on the St. Joseph Site.

![Figure 4.1-8. Dimensional View and Layout of VAMC Buildings on the St. Joseph Site.](image)

The impact to visual quality of the St. Joseph Site would be similar to the impact described for Alternative A. The VAMC campus buildings would create a noticeable contrast to the existing landscape and would have an adverse visual effect because the buildings would obstruct or detract from what some observers would consider a scenic view. Some observers could consider the introduction of the visual elements of the VAMC out of scale or character with the surrounding area. The nearby presence of other medical facilities could lessen the extent of an adverse impact because of observers’ expectations of future use of the area based on similar surrounding uses. There are also fewer residences immediately adjacent to the site (compared to Alternative A), although there is one development at the southwest corner of the site near I-265, and a new residential development (over 400 homes) is planned for the lot directly across the St. Joseph Site on Factory Lane. Visual effects to these developments would be potentially significant. Figures 4.1-9 and 4.1-10 simulate the change to the visual character of the landscape from the presence and appearance of the VAMC campus buildings. The extent of the impact would depend on the dominance and noticeability of the buildings in the landscape and the observers’
attitudes and perspectives regarding the presence and purpose of the buildings. The extent of the aesthetic impact from the contrast to the existing landscape and the visual appearance of the façade would range from negligible to major, depending on the observer. Visual effects to adjacent developments would be potentially significant.

Figure 4.1-9. View to West from Bush Farm Road at Intersection with Old Henry Road (existing on left, Alternative B on right).

Figure 4.1-10. View to West from Factory Lane near Entrance Road to Covenant Classical Academy (existing on left, Alternative B on right).

The building setbacks, transitional zones, and landscape buffers for the VAMC campus at the St. Joseph Site more than meet the minimum Land Development Code requirements that address aesthetic issues associated with a “conditional use” within form districts specified as “suburban workplace” (large-scale industrial and employment uses in suburban locations) and “neighborhood” (described, in part, as appropriate and compatible integration of residential, civic, commercial, office and service uses that promotes close to home shopping and service opportunities). Therefore, the site layout would be compatible with these existing zoning designation standards.

Building height in the portion of the campus that would fall within the neighborhood form district could exceed the maximum height specified for that form district, but consistency can be improved for this form district with increased setback distance. Section 4.8.3.2 provides a detailed comparison of building height
to the various height requirements for both of the form districts at the St. Joseph Site. The visual impact of the building height under Alternative B can be considered negligible to major, depending on the observer. They are likely to be major to those residences located closest to the VAMC campus based on the design analyzed in this EIS. Overall, however, the St. Joseph Site, by virtue of its larger size than the Brownsboro site, provides a larger natural buffer between the VAMC campus and nearby residences. VA notes that general placement within the property boundary was based on optimizing site engineering factors (e.g., topography and drainage) and environmental considerations (i.e., to avoid wetlands) to the extent possible. It would not be known until final design of this site whether additional features could be incorporated to further reduce aesthetic impacts on nearby residents. See Section 4.8 for further analysis of potential impacts specific to zoning and land use.

Visual impacts from exterior lighting of the campus would be the same as described for Alternative A.

4.1.4 Alternative C: No Action

4.1.4.1 Construction

No construction is planned for the existing VAMC at the Zorn Avenue location; therefore, no construction-related impacts to visual quality or the aesthetics of the area would occur. If the new VAMC is not constructed at either the Brownsboro Site or St. Joseph Site, future development of those sites by others could have similar construction-related impacts to visual quality as described for Alternatives A and B.

4.1.4.2 Operation

Veterans health care services would continue at the existing Robley Rex VAMC; therefore, no operation-related impacts to visual quality or aesthetics of the area would occur. Future development of the Brownsboro Site or St. Joseph Site by others could have similar operation-related impacts to visual quality as described for Alternatives A and B.
This page intentionally left blank.
4.2 Air Quality

4.2.1 Evaluation Criteria

A “conformity applicability analysis” is provided in the following sections to determine if the construction and operation of the new VAMC campus are subject to the general conformity requirements of the Clean Air Act. A “conformity determination” is required if the total direct and indirect emissions equal or exceed the *de minimis* threshold of the criteria pollutant and any precursor, and to determine if the federal project could interfere with implementing the state implementation plan to achieve attainment status. The *de minimis* threshold for PM$_{2.5}$ is 100 tons per year (40 CFR 93.153 (b)(1)).

4.2.2 Alternative A: Brownsboro Site

4.2.2.1 Construction

Construction activities at the Brownsboro Site would generate both coarse and fine particulate emissions from grading the ground surface for site preparation, excavating and blasting (need for blasting is not anticipated) to install utilities and building foundations, operating heavy equipment (examples of which are provided in Section 4.7), and driving construction vehicles on paved and unpaved roads. The amount of particulate emissions from construction is based on the amount of ground surface exposed, type and intensity of the activity, soil type and conditions, wind speed, and dust control measures used. Total suspended particulates were calculated using the emission factor for heavy construction activity operations from AP-42 Compilation of Air Pollutant Emission Factors (EPA 1995) to conservatively estimate emissions of PM$_{10}$ and PM$_{2.5}$ (particulate matter smaller in diameter than 10 and 2.5 micrometers, respectively). As shown in Table 4.2-1, the conservative estimate of particulate emissions from construction of the replacement VAMC campus are below the *de minimis* threshold level of 100 tons per year. Therefore, the action is assumed to conform to the state implementation plan for PM$_{2.5}$ and would not contribute to a violation of the PM$_{10}$ standard, and no further conformity applicability analysis or determination is necessary.

<table>
<thead>
<tr>
<th>Project Site (acres)</th>
<th>Exposed Area1 (acres)</th>
<th>Duration (months)</th>
<th>Emission Factor2,3 (tons/acre/month)</th>
<th>Control Efficiency (%)</th>
<th>Total Emissions (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.9</td>
<td>27.9</td>
<td>12</td>
<td>1.2</td>
<td>80</td>
<td>80.4</td>
</tr>
</tbody>
</table>

1 Assumes 80 percent of project site is exposed for entire year; amount exposed would reduce as construction progresses.

2 Total suspended particulate emission factor (EPA 1995).

3 Use of this factor to estimate PM$_{10}$ emissions will result in conservatively high estimates; therefore, it is also conservative for PM$_{2.5}$.

Construction activities would maintain compliance with APCD Regulation 1.14, Control of Fugitive Particulate Emissions (APCD 2015). VA would require the general construction contractor to prepare and submit a dust control plan to be reviewed and approved by the APCD before the start of any site preparation and construction activities. Reasonable precautions for minimizing fugitive dust during construction activities include measures such as the following:

- Water or chemical dust suppression during construction activities
- Asphalt, oil, water, or chemicals on roads, material stockpiles, and other surfaces
- Covering open-bodied trucks transporting materials that may become airborne
- Proactive agricultural practices, including tilling and fertilizer application
• Maintaining roadways in a clean condition
• Vehicular speed limitation

Section 5.2 provides additional details on the specific abatement measures to prevent visible dust emissions beyond the property boundaries.

Fuel combustion in construction worker commuter vehicles and in diesel-fueled heavy construction equipment would temporarily increase volatile organic compounds, nitrogen oxides, sulfur dioxide, PM$_{2.5}$, and carbon monoxide emissions in the area. However, because of updated vehicular emission controls and required fuel standards, these increases are expected to be temporary and negligible.

The estimated 80.4 tons of particulates emitted from construction activities would be a 0.5 percent increase in the approximately 15,900 tons per year of PM$_{10}$ already emitted annually in Jefferson County (EPA 2015a).

VA would also comply with the Kentucky Division for Air Quality regulation KAR 63.010 related to fugitive emissions (see Section 3.2 of this FEIS for state requirements), as well as the state’s additional suggestions, to the extent possible, to utilize alternatively fueled equipment, use other emission controls that are applicable to project equipment, and reduce idling time on equipment. The proposed project would include no open burning activities.

Thus, fugitive dust emissions from construction under Alternative A would have a negligible impact on regional air quality.

4.2.2.2 Operation

Operating the new VAMC campus would have long-term effects on air quality from pollutant emissions from stationary and mobile sources. The new campus would include a central utility plant for the boilers, cooling towers, and generators to power, heat, and cool the facilities. The following emissions rates were calculated for these units (URS/SmithGroup 2014):

• Nitrogen oxides – 44.91 tons per year
• Carbon monoxide – 78.24 tons per year
• Sulfur dioxide – 0.33 tons per year
• PM$_{2.5}$ – 39.23 tons per year
• Volatile organic compounds/non-methane hydrocarbons – 1.93 tons per year
• Formaldehyde – 9.44 tons per year

Air emissions would also be generated from underground and above-ground fuel storage tanks and fuel dispensing pumps. The primary fuel source for the boilers would be natural gas. Fuel oil would be stored in tanks as an emergency fuel source for the boilers and to power the emergency generators. Unleaded gasoline and diesel fuel would be stored for use in hospital and maintenance vehicles and equipment. The different items of equipment would be sources of nitrogen oxides, sulfur dioxide, volatile organic compounds, PM, carbon monoxide, and hazardous air pollutant emissions. Combustion of natural gas and fuel oil would also emit the greenhouse gases carbon dioxide and methane.

Because Louisville is in non-attainment for PM$_{2.5}$, the VAMC would be subject to Title V and New Source Review Permitting which would ensure the facility meets the Federal Clean Air Act Requirements.
The construction or installation and operation of the emission source equipment would be subject to the Louisville Metro APCD permit requirements. APCD would review the design and manufacture information of the equipment; the type, rate, and potential quantity of emissions; and compliance monitoring and schedule. Based on the potential quantity of emissions, APCD would determine if the VAMC campus would operate as a major or minor source of emissions and identify the appropriate permit to implement and enforce. Because of the stringent design and manufacturing regulatory requirements to control air emissions, along with the permitting and monitoring requirements enforced by the Louisville Metro APCD, operating emission source equipment would not emit pollutants in a significant quantity that would result in regional exceedance of a NAAQS.

Gasoline dispensing equipment (storage tanks and nozzles) are considered non-emission sources for permitting purposes because emissions from the equipment are controlled by Stage I and Stage II vapor recovery systems. Although a permit from the Louisville Metro APCD would be required, the potential quantity of emissions does not need to be calculated and, therefore, the operation of this equipment would not emit pollutants in a significant quantity that would result in regional exceedance of a NAAQS.

Because the emission source equipment is subject to the Louisville Metro APCD permitting review and enforcement program, the emissions from operating the VAMC campus would be assumed to conform to the state implementation plan; therefore, no further conformity applicability analysis or determination is necessary.

According to the VAMC Traffic Impact Study (Appendix B), approximately 5,022 vehicles will enter/exit the facility daily, resulting in 10,044 one-way trips. Some of these vehicles will use the north parking garage and will not operate in the immediate vicinity of neighboring residences bordering the southeastern portion of the site. This number compares to approximately 9,373 one-way trips if the Brownsboro Site were to be developed as a mixed-use facility (Palmer 2016). When comparing the proposed VAMC development to an expected future mixed-use development scenario without the VAMC, the increase in vehicular air emissions would only be slightly higher (9 percent). However, under either development scenario (VAMC or mixed use), the number of cars would increase greatly over existing conditions associated with an undeveloped site; and the increase in vehicular air emissions would also be expected to be much higher.

Fuel combustion in passenger and delivery vehicles and buses traveling to and from the replacement VAMC campus would increase volatile organic compounds, nitrogen oxides, sulfur dioxide, PM$_{2.5}$, and carbon monoxide emissions in the area. Because of updated vehicular emission controls and required fuel standards, and because these vehicle trips would replace those occurring to existing VA facilities throughout the metropolitan area, any increases in area-wide emissions are expected to be negligible.

Additionally, operation of the existing Zorn Avenue VAMC has not resulted in the identification of increased air emissions resulting in adverse effects onsite or offsite. This is consistent with EPA’s determination that vehicular air emissions from major roadways are generally reduced to near background levels within 500 to 600 feet of the source (EPA 2015b), and incorporating roadside landscaping and barriers further reduces ground-level pollutant concentrations downwind from the source. The proposed site layout—which locates truck traffic on the west side of the site, away from most of the nearby residences, focuses employee (one trip per parking space per day) parking in the south garage, and includes landscape tree planting along the eastern site boundary—serves to reduce air quality impacts to neighboring residential receptors.

However, VA recognizes that residents living in close proximity to the proposed VAMC campus (especially those within 500 to 600 feet) may experience more adverse effects from the increased air
emissions than other nearby communities, especially given that they also live in close proximity to major roads (US 42/22 Brownsboro Road) and highways (I-264) that already move significant traffic volumes during certain times of day.

A substantial fraction of the U.S. population lives in close proximity to traffic. A 2012 EPA report found that the majority of the U.S. population lived in areas in nonattainment of one or more of the NAAQS in effect at that time - a total population of 159 million people (based on 2010 Census data for those locations) (EPA 2012). Proximity to motor vehicle traffic is associated with increased exposures to ambient noise, toxic gases and particulate matter including diesel particulates. Residential proximity to traffic has been associated with various health impacts, particularly asthma exacerbation and possibly onset of asthma. Traffic proximity is also associated with noise, which is a risk factor for various health problems. Workplace and transportation-related noise have been associated with the release of stress hormones; sleep disturbance; and hypertension. Whether noise or other factors account for it, local traffic volume is a predictor of stress (which itself is associated with health risks) (EPA 2015c).

It is also important to note, however, that there are both positive and negative aspects to living near major roads. Proximity to roads can provide access to jobs, health care, food, recreational opportunities, and other benefits. At a regional scale, the increase in traffic and emissions at the new VAMC campus on Brownsboro Road would likely be offset by the decrease in traffic and emissions expected at the existing VAMC on Zorn Avenue. Facility operation would also meet NAAQS standards, which are established to protect human health.

Finally, planned improvements by the Kentucky Transportation Cabinet (KYTC), as described in Sections 4.13 and 5.13, are expected to help reduce traffic congestion (and associated air emissions). VA would advocate for potential solutions that KYTC could implement to improve traffic along the Brownsboro Road corridor. VA has also committed to efforts to help increase local public transit options that should help reduce driving trips over the long term.

Greenhouse Gas Emissions

Greenhouse gas (GHG) emissions attributable to VAMC operations at the Brownsboro Site can be estimated using accounting tools developed by the GHG Protocol. Three scopes of GHG emissions are defined in Section 3.2.2.3.

Scope 1: Direct GHG emissions from VAMC operations at the Brownsboro Site would predominantly include the consumption of natural gas and #2 fuel oil. Operation of fleet vehicles for landscaping and facility maintenance would also account for GHG emissions; however, such GHG emissions were assumed to be negligible when compared to GHG emissions from natural gas and #2 fuel oil consumption and were not included in the facility estimate.

For GHG emissions estimation purposes, natural gas and #2 fuel oil consumption are assumed to be a function of facility size. As a result, usage rates, and therefore GHG emissions rates, were scaled from estimates for the existing Robley Rex VAMC (26 percent increase). Scope 1 GHG emissions from VAMC operations at the Brownsboro Site are estimated at 3,796 metric tons of carbon dioxide equivalents (t CO₂ eq). New equipment installed at the Brownsboro Site, combined with the objective of achieving a Leadership in Energy and Environmental Design (LEED) Silver rating for the new facility, would result in increased fuel efficiencies, and use of geothermal systems may also reduce fuel consumption. Therefore, the Scope 1 GHG emissions are likely overestimated.

Scope 2: For GHG emissions estimation purposes, electricity consumption is assumed to be a function of facility size. As a result, electricity usage rates were scaled from usage rates for the existing Robley Rex
VAMC, resulting in a projected annual electricity usage of approximately 22,222,322 kilowatt-hours for the Brownsboro Site. Approximately one-third of the electrical demand, operating at an assumed 25 percent capacity factor, is to be supplied by solar (photovoltaic) generation, resulting in an 8 percent reduction in electricity purchased from Louisville Gas and Electric (LG&E).

The Scope 2 GHG emissions calculation tool developed for the service sector by the GHG Protocol was used to estimate electricity indirect GHG emissions (WRI 2016). Scope 2 GHG emissions from VAMC operations at the Brownsboro Site are estimated at 16,871 t CO₂ eq (LEI 2016). The estimated Scope 2 GHG emissions would be further reduced with the achievement of a LEED Silver rating for the new facility and the potential incorporation of co-generation facilities at the Brownsboro Site.

Scope 3: Other indirect GHG emissions predominantly include vehicular emissions from commuting VAMC employees and vehicular emissions from patient use of VAMC services. Transportation and ultimate disposal of VAMC-generated wastes were assumed to be negligible when compared to GHG emissions from other transportation sources and were not included in the facility estimate.

Increases in VAMC workforce and patient clinic stops would be realized regardless of the alternative selected. Additionally, the new facility would be located in the same general region as the existing facility, and assumptions pertaining to employee and patient transportation would be the same. Therefore, Scope 3 GHG emissions are estimated to be the same for all alternatives.

Based on the GHG emissions estimates above, total GHG emissions for facility operations at the Brownsboro Site would be approximately 12 percent greater than estimates for the existing Robley Rex facility (28,953 t CO₂ eq, or approximately 0.017 percent of the total GHG emissions for the state of Kentucky) (CAIT 2016). However, as described above, the GHG emissions are likely overestimated because increased fuel efficiencies, achievement of LEED Silver certification, use of geothermal systems, and use of co-generation facilities would reduce the GHG emissions estimate for the Brownsboro Site. Therefore, GHG emissions are not predicted to significantly increase under Alternative A, and increases in GHG emissions are not likely to result in adverse environmental impacts such as changes in floodplains or regional water availability.

Because the GHG emissions from the proposed projects are considered to be very small, quantitative modeling beyond calculation of GHG emissions was not necessary. Also, the analysis focused on the proposed replacement VAMC since energy generation and usage associated with its operation would be the major contributor to GHG emissions (compared to transportation related activities).

4.2.3 Alternative B: St. Joseph Site

4.2.3.1 Construction

Under Alternative B, the same proposed facility would be constructed at the St. Joseph Site. Therefore, the predicted air quality impacts from construction activities would be the same as those described above for Alternative A: offsite health impacts would also be negligible at the St. Joseph Site.

4.2.3.2 Operation

Under Alternative B, the same proposed facility would be operated at the St. Joseph Site. Therefore, the predicted air quality impacts from facility operation would be the same or less than those described above for Alternative A: offsite health impacts would also be negligible at the St. Joseph Site. Potential air quality impacts and resulting health effects from increased traffic congestion would also be expected to more adversely affect residents living in close proximity to the VAMC, as described for the Brownsboro
location. In particular, nearby residents who also live in close proximity to a heavily travelled road or
interstate highway already moving significant traffic volumes (I-265) may experience more adverse
health effects than others in the surrounding communities. Proximity to motor vehicle traffic is associated
with increased exposures to ambient noise, toxic gases and particulate matter including diesel particulates
(see related health effects discussion in Section 4.2.2.2).

The potential air quality (and associated health) effects would be expected to be slightly less at the St.
Joseph Site given the larger buffer area between the proposed VAMC and the location of nearby
residences beyond the 500-600 foot impact radius identified by EPA. ong the freeway, also does not
appear to be as heavy at this time as in the Brownsboro Road area.

4.2.4 Alternative C: No Action

4.2.4.1 Construction
Under No Action, construction activities would not occur, and there would be no construction-related air
quality impacts.

4.2.4.2 Operation
Under No Action, use of the existing facilities would continue. Air emissions from existing equipment
would continue, under the minor source permit issued by the Louisville Metro APCD. Continued
compliance with permit conditions would be expected. Thus, no effects to air quality would be
anticipated.
4.3 Cultural Resources

4.3.1 Evaluation Criteria

This analysis applies the Criteria of Adverse Effect as described in the regulations for implementing the National Historic Preservation Act Section 106 process (36 CFR 800.5). The regulations define an undertaking (action) as having an adverse effect on historic properties if the undertaking would alter, directly or indirectly, any of the characteristics that qualify a property for inclusion in the National Register of Historic Places (NRHP) in a manner that would diminish the integrity of the property's location, design, setting, materials, workmanship, feeling, or association. Examples of adverse effects include but are not limited to (36 CFR 800.5):

(i) Physical destruction of or damage to all or part of the property;
(ii) Alteration of a property, including restoration, rehabilitation, repair, maintenance, stabilization, hazardous material remediation, and provision of handicapped access, that is not consistent with the Secretary’s standards for the treatment of historic properties (36 CFR part 68) and applicable guidelines;
(iii) Removal of the property from its historic location;
(iv) Change of the character of the property’s use or of physical features within the property’s setting that contribute to its historic significance;
(v) Introduction of visual, atmospheric or audible elements that diminish the integrity of the property’s significant historic features;
(vi) Neglect of a property which causes its deterioration, except where such neglect and deterioration are recognized qualities of a property of religious and cultural significance to an Indian tribe or Native Hawaiian organization; and
(vii) Transfer, lease, or sale of property out of Federal ownership or control without adequate and legally enforceable restrictions or conditions to ensure long-term preservation of the property’s historic significance.

The resources analyzed for potential effects are those within the area of potential effect (APE) of each site. Each APE was established in consideration of the scale, nature, and setting of each alternative location to account for direct effects resulting from construction activities and indirect effects, primarily visual in nature, resulting from the construction and operation of the VA Medical Center.

4.3.2 Alternative A: Brownsboro Site

The APE for the Brownsboro Site extends 1,000 feet from the parcel boundary, encompassing all areas from which the parcel would be visible. The APE was defined in consultation with the Kentucky Heritage Council (State Historic Preservation Office [SHPO]) and the Louisville Metro Historic Preservation Officer. The APE was established in consideration of the scale, nature, and setting of the proposed project in order to account for direct effects resulting from construction activities and indirect effects, primarily visual in nature, resulting from the construction and operation of the proposed VA Medical Center.

4.3.2.1 Construction

No historic properties were identified on the Brownsboro Site. Therefore, the proposed construction of a replacement VA Medical Center at the Brownsboro Site would result in no direct effects to historic properties. Review by the Kentucky SHPO of the cultural resource sites identified during past site investigations indicated the potential for Site JF 487 to be potentially eligible for listing on the NRHP with additional
research. However, the SHPO did agree with the finding that there would be no potential for effect on this site based on site location with respect to the proposed project and concluded that the undertaking would have no adverse effect on historic properties (Kentucky Heritage Council 2015).

4.3.2.2 Operation

One historic property, the NRHP-listed George Herr House (JF 394) was identified within the APE. The house itself falls outside the APE, but the historic property boundary falls within 1,000 feet of the proposed project site. Because the property is hemmed in by both trees and the Windy Hills subdivision, sightlines in all directions are interrupted by the house’s surroundings. It is unlikely that the proposed VAMC would be visible from the property, and, given the distance between the property and the Brownsboro Site, there is no potential for any other sort of indirect effects resulting from the project. Thus, there would be minimal, if any, noticeable effects from the proposed project on the historic residence.

Four significant historic sites located outside the APE were assessed for potential impacts from the project, at the request of Cynthia Johnson, Louisville Historic Preservation Officer. All four sites are listed on the NRHP, and one is also designated a National Historic Landmark. All are located west of the APE, and on the west side of the Watterson Expressway (I-264).

- JF 527, the Zachary Taylor House, is located on Apache Road and is approximately 0.68 miles west of the Brownsboro Site. It is a National Historic Landmark. The house is entirely surrounded by a subdivision, including many mature trees. Because of the surrounding residences and trees and the distance between the residence and the Brownsboro Site, it is anticipated that the proposed VAMC would have no effect on the Zachary Taylor House.
- JF 528, the Zachary Taylor National Cemetery, is located on Brownsboro Road, approximately 0.5 miles west of the Brownsboro Site. The cemetery is surrounded on the west, north, and east by subdivisions, and more subdivisions and busy streets (including Brownsboro Road and the Watterson Expressway) are located between the cemetery and the Brownsboro Site. Mature trees are scattered through the cemetery and surrounding neighborhoods. Because of the surrounding residences and trees and the distance between the cemetery and the Brownsboro Site, it is anticipated that the proposed VAMC would have no effect on the Zachary Taylor National Cemetery.
- JF 593, the Taylor-Oldham-Herr House, is located on Ballard Mill Lane, approximately 0.4 miles west-northwest of the Brownsboro Site. The house is entirely surrounded by a subdivision, including many mature trees around the house and throughout the neighborhood. Because of the surrounding residences and trees and the distance between the residence and the Brownsboro Site, it is anticipated that the proposed VAMC would have no effect on the Taylor-Oldham-Herr House.
- JF 395, the Taylor-Herr House, is located on Waterford Road, approximately 0.38 miles west of the proposed project location. The house is entirely surrounded by the Wexford Hills subdivision, including many mature trees around the house and throughout the neighborhood. Because of the surrounding residences and trees and the distance between the residence and the Brownsboro Site, it is anticipated that the proposed VAMC would have no effect on the Taylor-Herr House.

While noise and potential blasting activities during construction could affect the historic “feeling” of a given property for visitors, such effects would be temporary. Overall, because of the surrounding trees, residences/suburban development, and the distance between the proposed project area and the other National Register and National Historic Landmark sites, it is anticipated that the proposed project would have no effect on those sites, or any other sites beyond 1,000 feet of the project area. The physical
distance is sufficient to protect the properties from potential direct effects (e.g., physical destruction, deterioration, or damage; change of character of physical features); and the visual screening is considered sufficient to protect the properties from potential indirect effects (e.g., change in historic setting). SHPO similarly concluded that the proposed construction and operation of a replacement VAMC at the Brownsboro Site would result in no adverse effects to historic properties at or near the Brownsboro Site, including the National Register and National Historic Landmark historic properties within the larger vicinity of the Site (KY Heritage Council 2015).

While no archaeological or tribal artifacts have been found on the immediate site, in the unexpected event that archaeological materials, or any human remains or Native American cultural items falling under the Native American Graves Protection and Repatriation Act (NAGPRA) are discovered during any phase of the project, VA would stop work immediately and protect the discovery site until consulting with the appropriate authorities (i.e., KY SHPO or Miami Tribe entity of jurisdiction for the location of discovery) on the appropriate next steps.

Under Alternative A, VA's plans for disposition of the potentially NRHP-eligible existing Zorn Avenue VAMC have not been determined and would be the subject of a future reutilization feasibility study, NEPA analysis, and consultation under Section 106 of the National Historic Preservation Act, as appropriate.

4.3.3 Alternative B: St. Joseph Site

The APE for the Brownsboro Site extends one-half mile from the parcel boundary. There are no NRHP-listed sites within this radius.

4.3.3.1 Construction

No historic properties were identified on the St. Joseph Site. No archaeological resources that were considered significant were identified on the parcel. These findings are documented in the 2012 Phase I Archaeological Inventory Report prepared for the St. Joseph Site (Eberwine et al. 2012); a copy of the report was provided to the KY SHPO as part of Appendix C of the PEA. The results were later accepted by SHPO who agreed that no further work was needed at that time (KY DEP 2016). Therefore, VA concludes that the proposed construction of a replacement VAMC at the St. Joseph Site would result in no direct effects to historic properties or cultural resources.

VA will continue to coordinate further with SHPO, as needed, to complete the Section 106 consultation process for the St. Joseph Site, and would take no action until the process is complete.

4.3.3.2 Operation

No historic districts or eligible structures are located on or immediately adjacent to the St. Joseph Site. Eberwine et al. (2012) noted that two historic districts, located approximately 1 to 1.5 miles north of the site may be within its viewshed. However, follow-up reconnaissance was conducted in 2015, after construction of an elevated municipal water tower just outside the southern end of the parcel. That water tower was not visible from any street within either historic district. Thus, no structures on a potential VAMC campus on the St. Joseph Site would be expected to be visible from these or other historic properties and no effects to historic or cultural resources would occur.

Under Alternative B, VA's plans for disposition of the potentially NRHP-eligible existing Zorn Avenue VAMC have not been determined and would be the subject of a future reutilization feasibility study,
NEPA analysis, and consultation under Section 106 of the National Historic Preservation Act, as appropriate.

4.3.4 Alternative C: No Action

No construction would occur under Alternative C. The existing Robley Rex VAMC on Zorn Avenue would continue to operate. There would be no effects to historic or cultural resources.

Neither the Brownsboro Site nor the St. Joseph Site would be used by VA for a replacement medical center campus. No significant cultural resources were identified at either site. As such, should either of these sites be developed by others, negligible adverse cultural resources impacts would occur.
4.4 Geology and Soils

4.4.1 Evaluation Criteria

The potential effects related to geology and soils were evaluated through a qualitative assessment of geologic hazards and the potential for severe erosion or liquefaction, including both construction- and operation-related activities. An alternative would be considered to result in an adverse impact related to geology and soils if it was associated with any of the following characteristics or outcomes:

- Exposure of people or structures to potential substantial adverse seismic effects, including the risk of loss, injury, or death involving strong seismic ground shaking, or seismic-related ground failure, including liquefaction or landslides
- Location on a geologic unit or soil that is unstable or would become unstable as a result of the project, and potentially result in onsite or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse
- Location on expansive soil creating substantial risks to life or property

The Louisville Metro Government Land Development Code (Chapter 4, Part 9) guides development on land within a karst-prone area, including geologic assessments conducted by a geologist or engineer licensed in Kentucky. For purposes of this evaluation, an adverse impact would be identified if the results of the geological assessment found the project site unsuitable for construction, or if construction activities could disrupt karst features so as to cause property damage or safety concerns.

The Farmland Protection Policy Act requires VA, as the lead federal agency, to ensure its actions would not unnecessarily convert farmland designated as prime, unique, or of statewide importance to nonagricultural uses. For purposes of this evaluation, an adverse impact would be identified if the irreversible conversion of prime farmland is not compatible with local farmland protection policies.

4.4.2 Alternative A: Brownsboro Site

4.4.2.1 Construction

Under Alternative A, construction activities would include site grading and preparation, which would disturb exposed subsurface soils. Approximately 35 acres could be disturbed at the Brownsboro Site. Exposed soils would be susceptible to erosion from wind and stormwater runoff from the construction sites. Preliminary grading plans indicate the topography (elevation) of the site would be raised by approximately 10 to 12 feet to a finished floor elevation of 600 feet for the east bar buildings and north parking deck, and would be excavated approximately 6 feet for a basement elevation of 583 feet for the west bar buildings and 588 feet for the south parking deck. In addition to onsite cut materials, fill material would be imported to raise the site elevation for construction. Bedrock would be encountered in some areas during excavation for utilities, for basement floor elevations, and foundations. Figure 4.4-1 is a schematic of the subsurface soil and bedrock conditions of the project site showing the proposed building elevations (AMEC 2014).

Drainage changes resulting from changes to site topography are anticipated to be minimal and would be monitored for erosion potential through routine site stormwater management practices. Wind erosion could temporarily increase airborne particulate matter in the area, resulting in short-term health, visibility, and aesthetics impacts. Temporary increases in sedimentation in stormwater drainages could occur as a result of surface runoff erosion.
Figure 4.4-1. Schematic of Brownsboro Site Subsurface Soil and Bedrock Conditions.

The building foundation systems are anticipated to consist of drilled pier (or “caissons”) bearing on the relatively shallow bedrock. As indicated in Section 3.4, extensive geotechnical investigations were conducted of the Brownsboro Site (AMEC 2014) by a firm with extensive local knowledge and expertise with land development in karst geologic settings. Results were also reviewed by the US Army Corps of Engineers (USACE), Louisville District - Geotechnical Engineers who confirmed that the investigations reflected a thorough evaluation of the risk associated with karst and groundwater issues for the Brownsboro Site; and included implementation of an extensive site geotechnical drilling program (including sampling of the underlying bedrock materials). Recommendations from the report have been carried forward into the project design and would be incorporated into construction phases to mitigate risk for karst issues.

Risk from karst activity at the site can be split into two concerns; existing voids that could form small sinkholes and voids that will be formed over time due to groundwater dissolving the limestone. Regarding the former, the AMEC geotechnical report indicates top of rock is approximately 5.3 to 18.5 feet below the existing ground surface. This means the karst development at this site is relatively shallow (due to the thin layer of soil overburden) and any karst features in this geologic setting would also be shallow. The voids in the underlying bedrock are small and do not lend themselves to large soil drop outs. The site is not underlain by large caverns that would allow for large depressions to suddenly develop. As indicated in the AMEC report, the risks related to karst issues at this site are manageable when compared to the adjacent properties.

With respect to the second risk from karst activity, the development of voids due to dissolving rock cannot be stopped. However, this occurs on a geologic time scale over thousands if not tens of thousands of years (URS/SmithGroup 2014). Procedures would be taken during construction to discover the existing voids. This would include confirmation of the potential sinkhole identified in Section 3.4. Simply removing the existing vegetation on the surface is likely to reveal it, but beyond that proof rolling would
be utilized to further test the soils for underlying voids. Proof rolling is a process for checking compacted soils for soft areas; soft subgrade spots can be mitigated prior to surface construction activities.

Because of the geology of the Brownsboro Road site and its surrounding region, VA obtained a Karst Feature Survey in August 2012. VA also had groundwater monitored for six continuous months to investigate existing conditions, and in addition to traditional geotechnical borings, the Geotechnical Engineer of Record, AMEC, performed and analyzed nine lines of refraction micro-tremor (ReMi) tests. The ReMi testing results indicate minor karst features in isolated locations, though not of the scale that exists in southwestern Kentucky or Florida where large sinkholes are prevalent. VA's construction contract, which would be developed, managed, and enforced by the USACE, would require that a Geotechnical Engineer be present during site work to observe conditions and determine whether mitigation is needed should one of those minor karst features be encountered or develop. Continuous monitoring of site work would facilitate real time observation of water and soil behavior that may not be evident during testing. Treatment methods would be based on the size of the karst or sinkhole opening and would be a site-specific and condition-specific determination made by the geotechnical engineer. Examples might include concrete plugs or various sizes of rock rip-rap and aggregate overlain by compacted clay backfill.

There is a low risk of soil dropouts developing over previously undetected sinkholes in areas of karst activity similar to the project site, based on experience in this part of Jefferson County (AMEC 2014). Site development planning in karst areas must weigh the cost of site development and risk reduction measures with the risk of future sinkhole activity. The entire community surrounding the Brownsboro Site has been successfully developed with both deep and shallow foundation support in the same geologic setting, which indicates the karst risk has been acceptable for previous site development for the adjacent land owners, business owners, transportation cabinet and public utilities. The borings advanced (~96 borings) as part of AMEC’s investigation were located within the footprints of the proposed associated buildings; and review of the design indicates that the bottom of the piers take into account the variability in the rock structure (AMEC 2014). Therefore, the presence of karst features would not be associated with an adverse effect under Alternative A.

VA anticipates that most bedrock in confined areas (utility trenches and foundation footings) would be removed using ripping tools and pneumatic hammers and does not anticipate the use of blasting for site work. In the unlikely event that it were determined necessary by the onsite geotechnical engineer to efficiently remove resistant bedrock and large boulders, the construction contractor would be required to limit ground vibrations or maximum peak particle velocity in any direction, per Kentucky Revised Statute 351.330 (Blasting Regulations), “not to exceed two (2) inches per second at the immediate location of any dwelling house, public building, school, church, commercial or institutional building, and the particle velocity at such location immediately after a period of one (1) second following the peak particle velocity produced by any charge, shall not continuously exceed one-half (1/2) inch per second.”

Vibration standards and damage criteria from blasting are based on years of research and legal proceedings – ground vibration or peak particle velocity (PPV) not exceeding two inches per second would avoid offsite damage (KY 351.330); any blasting that could exceed this threshold would require the written consent from the property owner or owners affected. This PPV would feel like a loaded truck or bus going by 50 to 100 feet away. Two primary factors affecting ground vibration levels from blasting are weight of the explosive fired and distance from blast to point of concern, such as a house. To maintain the PPV standard and avoid damage if blasting is required, fewer explosives would be used as a blast hole gets closer to a point of concern. Adherence to this standard and the requirements of the Kentucky Revised Statute 351.330 for possible blasting operations would minimize impacts and avoid damage to nearby buildings and houses. Given the proximity of homes to the construction site and high level of concern from nearby residents about potential damage from blasting activities, the construction contractor
also would provide advance written notification to the cities of Crossgate and Graymoor-Devondale and immediately adjacent property owners. The contractor would determine whether conditions warrant a pre-blast survey of adjacent structures and, if deemed necessary, would offer these adjacent property owners the opportunity to request a pre-blast survey of their structure. There are currently no notification requirements or pre-blast surveys required by law when using explosives for the purposes of construction. Contractor compliance with applicable federal and state laws for blasting and safety would be enforced by the USACE who would oversee construction. Section 5.4 identifies a complete list of measures that the VA / USACE would implement relating to blasting operations.

The Contractor would be responsible for any damage caused by blasting operations.

As with any other commercial development, if needed, the building would be constructed to incorporate a radon mitigation system in compliance with all applicable design and construction standards, if such a system is required to ensure that building occupants would not be exposed to radon in excess of 4 picocuries per liter.

The Natural Resources Conservation Service (NRCS) determined that the Brownsboro Site contains approximately 34.9 acres of prime and unique farmland, which would be irreversibly converted. The Farmland Conversion Impact Rating form (Form AD-1006) completed jointly by VA and NRCS assigned a relative value and site assessment score of 100 points to the Brownsboro Site. Because the total score was less than 160 points, the site does not require further consideration for protection, and the impact to prime and unique farmland is considered to be minor.

Contractor selection and bore drilling procedures for the geothermal system would follow the requirements and best practices detailed in VA’s Master Construction Specification, Division 23 81 49, Ground-Source Heat Pumps. This specification requires (1) the contractor is accredited by the International Ground Source Heat Pump Association (IGSHPA) or an equivalent nationally recognized association, (2) loops are constructed in accordance with specific IGSHPA configurations, and (3) specific borehole construction and grouting practices are utilized to protect hydrogeological resources. The proposed geothermal wells would extend into either the Grant Lake Limestone or the Calloway Creek Limestone formations below the site which are recognized as stable bedrock. While the surficial units are subject to karst development due to exposure and weathering, the process of installing and operating geothermal wells should not exacerbate existing karst conditions or create unstable conditions. Placement of geothermal bores would be based on information from test bores during the detailed design phase and ensure negligible impacts from construction in potentially karstic geology.

In summary, construction-related impacts to geology and soils would be minor and short-term. Construction-related geology and soils impacts, including erosion and sedimentation impacts, would be minimized through implementation of the construction best management practices identified in Section 5.4 (Mitigation Measures).

4.4.2.2 Operation

Operation of the proposed VAMC campus at the Brownsboro Site is not expected to result in adverse impacts to geology and soils. Landscape vegetation would be installed and maintained, thereby minimizing exposed soils and any resulting erosion potential.
4.4.3 Alternative B: St. Joseph Site

4.4.3.1 Construction

Under Alternative B, construction activities would include site grading and preparation, which would disturb exposed subsurface soils. Approximately 35 acres could be disturbed at the St. Joseph Site, although a greater area could be disturbed due to the larger size of the St. Joseph Site and potential differences in site layout, access drives, and total area landscaped.

In general, construction activities would be similar to those described for Alternative A (with site-specific geologic differences taken into account) and would result in similar impacts. Potential impacts to soils due to erosion from wind and stormwater runoff from the construction site are predicted to be localized and negligible with implementation of the required control plans. No known or suspected karst features have been identified from the 17 test borings done at the St. Joseph Site (Greenbaum 2011), and karst potential appears to be regionally lower at St. Joseph than Brownsboro. Regarding potential blasting activities, it is not yet known whether blasting would be required since less is known about the underlying rock strata at the St. Joseph Site. However, if it were determined to be required, the same precautions during construction as described for the Brownsboro Site would be taken at St. Joseph Site.

Development of the St. Joseph Site could impact prime, unique, statewide, or local important farmlands protected by the Farmland Protection Policy Act. A Farmland Conversion Impact Rating form (Form AD-1006) would be completed by VA and submitted to the local NRCS office for a determination of whether the site contains prime, unique, statewide, or local important farmland and the level of impacts. Preliminary review using the criteria of Form AD-1006, and estimating the input that would be provided by NRCS, resulted in an expectation that the St. Joseph Site would be assigned a total score less than 160 points. Therefore, Alternative B is not expected to require further consideration for protection and the impact to prime and unique farmland would be minor (VA 2016).

Construction-related impacts would be minor and short-term. Erosion and sedimentation impacts would be minimized through implementing construction best management practices and conforming with permit requirements.

4.4.3.2 Operation

Operation of the proposed VAMC campus at the St. Joseph Site is not expected to result in adverse impacts to geology and soils. Landscape vegetation would be installed and maintained, thereby minimizing exposed soils and any resulting erosion potential.

4.4.4 Alternative C: No Action

4.4.4.1 Construction

No construction activities would occur under Alternative C. There would be no construction-related adverse impacts to geology and soils.

4.4.4.2 Operation

Continuing use of the existing facilities would have no impacts to geology and soils.
This page intentionally left blank.
4.5 Hydrology and Water Quality

4.5.1 Evaluation Criteria

The potential effects related to hydrology and water quality were evaluated through a qualitative assessment of potential project-related drainage alterations, increased impervious areas, water quality degradation, or groundwater depletion, including both construction- and operation-related activities. An alternative would be considered to result in an adverse impact related to hydrology and water quality if it would result in any of the following:

- violate existing water quality standards or otherwise substantially degrade water quality
- result in substantial water quality changes that would adversely affect beneficial uses
- result in substantive groundwater depletion

Section 438 of the Energy Independence and Security Act of 2007 requires federal agencies to reduce stormwater runoff from federal development projects to protect water resources. Facilities with footprints exceeding 5,000 square feet must be designed in a manner that maintains or restores the predevelopment site hydrology to the maximum extent technically feasible. Development of the project site is also subject to the stormwater discharge regulations enforced by the Metropolitan Sewer District (MSD) to maintain compliance with the Kentucky Division of Water MS4 stormwater quality permit. In effect, VA’s proposed design is required to ensure that the stormwater discharge rate after construction would be the same as before construction. These regulations address the core requirement of the MS4 permit to use onsite “green infrastructure” or “green management practices” to control and treat stormwater runoff. For purposes of this evaluation, an alternative would be considered to result in an adverse impact if the VAMC campus cannot be designed so that stormwater retention onsite meets the federal and MSD requirements.

4.5.2 Alternative A: Brownsboro Site

4.5.2.1 Construction

Under Alternative A, construction activities would include site grading and preparation, which would disturb exposed subsurface soils. Approximately 35 acres could be disturbed at the Brownsboro Site.

Exposed soils would be susceptible to erosion from stormwater runoff from the construction site. Drainage changes resulting from changes to site topography and installation of impervious surfaces are anticipated to be minimal and would be monitored for erosion potential through routine site stormwater management practices. Temporary increases in sedimentation in stormwater drainages could occur as a result of surface runoff erosion.

Because the amount of ground surface that would be disturbed is greater than one acre, a Notice of Intent application with the Kentucky Division of Water for the Construction General Permit for stormwater runoff from the project site must be completed, and a Stormwater Pollution Prevention Plan outlining measures to be used during construction to minimize runoff from the site must be prepared. In addition, a site disturbance permit must be obtained from the MSD, and an Erosion Prevention and Sediment Control Plan must be prepared that details measures to trap 80 percent of the total suspended solids that could come from the project site during construction. These measures could include sediment trapping devices, temporary sedimentation basins, fabric fences, inlet protection measures to control the perimeter and construction entrances and other measures to control soil erosion and sediment and runoff from the site. The captured sediments would ultimately be reutilized or disposed of in accordance with established...
waste characterization and disposal practices. The remaining 20 percent of total suspended solids is not economical to capture and it would be carried out in runoff.

Potential impacts to water quality due to stormwater runoff from the construction site are predicted to be localized and negligible with implementation of the required control plans and best management practices. The nearest stream is almost a mile east of the project and would not be affected by project construction activities.

Blasting is not anticipated to be needed to remove bedrock for construction of foundations and other below grade structures. However, given the potential concerns over blasting in general and the close proximity of some residences, additional information is provided in the unlikely event that it is required at Brownsboro. Studies have shown that extensive fracturing in the rock around a blast hole that could affect groundwater is generally limited to a distance of 20 to 40 blast hole diameters (ODOT 2014). Thus, for the typical 3½ inch drill hole, the zone of damage would generally be 6 to 12 feet. Studies have also concluded that there are little to no significant long-term mechanical changes in an aquifer that could be attributed to blasts detonated at distances greater than 500 feet from an observation well (ODOT 2014). Because there are no existing groundwater wells in close proximity to the project site, blasting (if needed) would not be expected to impact groundwater.

The proposed geothermal wells would consist of small diameter boreholes drilled through the relatively thin surficial soil and into bedrock. After pipe is placed into the drill hole, the space around the pipe would be filled with a relatively impermeable cement-based grout. This grout fills the drilled borehole and blocks the flow of water into or out of the hole, effectively restoring the bedrock to its original condition. No part of the completed geothermal borehole installation around the closed loop pipe would be open space. The grout would act as a barrier to groundwater flow, and typically contains a percentage of bentonite that imparts self-sealing properties to the grout. While the surficial units are subject to karst development due to exposure and weathering, the process of installing and operating geothermal wells should not exacerbate existing karst conditions, create unstable conditions, or cause any basement flooding of nearby structures. Additionally, the AMEC geotechnical report did not identify any sink holes and indicates the site is not underlain by large caverns that would allow for large depressions to suddenly develop. Further, it indicates the risks related to karst issues at this site are manageable when compared to the adjacent properties. The entire community surrounding the Brownsboro Site has been developed in the same geologic setting, which indicates the karst risk has been acceptable.

Because the proposed site is located in an area with high potential for karst development where groundwater is susceptible to direct contamination from surface activities, VA would prepare a groundwater protection plan (GPP) in accordance with Kentucky Administrative Regulation (Title 40, Chapter 5:037) before drilling any geothermal bores. A GPP establishes the minimum acceptable groundwater protection practices for such construction. Kentucky Division of Water has generic GPPs for public use, which would be modified with site-specific information for the proposed geothermal bores at the new campus (URS 2014). A state-certified water supply well driller would construct the geothermal bores; the driller would provide project-specific details in the GPP, identifying the construction practices that would be implemented to protect groundwater for this specific project, such as full-depth grouting for each borehole to prevent shallow, often lower-quality groundwater from reaching deeper groundwater. The Kentucky Division of Water recommends that the GPP be retained in the drill rig(s) or contractor vehicle(s) that would be present onsite during the drilling. The rock and soil material removed during borehole construction would be temporarily stored onsite, and may be either used as clean fill or disposed offsite in accordance with local regulations, depending on the need for fill on the project site the nature and properties of the removed material. The Erosion Prevention and Sediment Control Plan required for sitewide construction would include provisions that would minimize or eliminate erosion sediment in runoff from drilling areas and from temporary onsite soil/rock storage locations.
Potential impacts to groundwater due to construction activities are predicted to be negligible with implementation of the GPP.

4.5.2.2 Operation

The proposed design of the VAMC campus under Alternative A would result in approximately 65 percent impervious surfaces on the Brownsboro Site that would impact the amount and rate of stormwater discharge from the site. Stormwater would be managed to meet predevelopment discharge rates for the 2-, 10-, 25-, and 100-year storm events in accordance with the MSD Design Manual (MSD 2015), and should therefore have minimal adverse effects on the hydrology of the project site and adjacent properties, surface water quality, and the rate of groundwater recharge.

VA’s project proposes to control storm water runoff through the use of surface and subsurface detention systems that would maintain the post construction hydrology to pre-development conditions, thus having no impact to hydrology of surrounding areas. Additionally, a natural features assessment of the Brownsboro Road site concluded no wetlands exist on the site and the site is not within a 100-year or 500-year flood zone, thus any restrictions related to such flood zones would not apply. Generally, in its current condition, the site drains from northeast to southwest and there is a limited amount of drainage towards the existing drainage ditch along the east boundary. Because of the relatively flat nature of the site, runoff mostly is absorbed by the site and becomes groundwater. As previously stated, VA's design for stormwater management shall be governed by both the requirements of section 438 of EISA and the Metropolitan Sewer District (MSD), which limits the site discharge to the predevelopment discharge for the design storms (effectively the 25-, 50- and 100-year storm event as defined by the MSD). As such, VA's design would direct storm runoff to a collection system; storing all storm water on site and discharging runoff to the western ditch along the Waterson Expressway at a rate no greater than the predevelopment rate.

Neighbors to the east of the site have expressed concern over the stormwater management of the VA site. At the Brownsboro Road site, the existing road ditches for I-264 near the SW corner of the site do appear to have small existing dropouts that intercept the ditch water. This water is likely a source of the water behavior observed by neighboring residents as noted in their public comments on the Draft EIS. VA proposes to control infiltration of storm water from the site into the underground water by proactively managing with grading and the installation of lined storm water ponds. This mitigation strategy would reduce the amount of groundwater recharge coming from the site by adding impervious ground cover and conveying water into lined detention basins on the site.

VA has committed to not adversely impacting the adjacent properties and would improve the drainage along the east property line as required by MSD. Specifically, the fence along the east boundary of the site would allow for the placement of a drainage ditch along the east edge of the VA property that would collect runoff (including that from adjacent yards) and direct it to the collection systems on the VA site that become part of the VA site collection, storage and discharge of stormwater. Drainage from the site would not be directed towards, or through the perimeter fence on the site's east and south boundaries.

The surface detention basins would be of the “green dry” type (see Figure 4.5-1) (MSD 2015), with wet meadow vegetation over highly permeable topsoil that is underlain by drain aggregate and perforated pipe. The 2- and 10-year storm events would infiltrate through the permeable topsoil and aggregate into the perforated pipe. This design allows for extended detention (length of time that stormwater would pond or remain in the basin) of about 48 hours (MSD 2015). The surface basins would not likely be a breeding source for mosquitoes because it takes approximately 7 to 10 days for larvae to enter the pupal stage. If a
water source evaporates before the larvae and pupae within it transform into adult mosquitoes, those young life stages typically will die (Orkin 2015).

Figure 4.5-1. Example of a Green Dry Basin.

An outlet control structure would collect drainage from the perforated pipes and control the discharge rate and flow from the detention basins into the surface drainage ditch in the Watterson Parkway right of way along the western edge of the Brownsboro Site. Green dry detention basins would be designed for the north end of the project site and the southwest corner of the site.

The subsurface detention basins would be located along the west side and in the southeast corner of the site. These would be concrete tanks or structures installed below grade to collect runoff primarily from roads, building roof drains, and parking areas. A bioswale would be constructed along the east edge of the site to collect drainage from adjacent properties and runoff from the onsite driveway. A bioswale is a shallow vegetated ditch with highly permeable topsoil underlain by drain aggregate and perforated pipe. The bioswale would be sloped to direct the drainage to the subsurface detention structure in the southeast corner of the project site. The stormwater would be pumped or gravity-drained from the structures and conveyed through storm sewer pipes to discharge to the surface drainage ditch in the Watterson Parkway right of way. Discharge from the subsurface structures would be controlled to emulate the
predevelopment rate and volume of the particular storm event, so as not to affect hydrology, surface water quality, and the rate of groundwater recharge.

Groundwater-bearing strata would likely be exposed in excavations, which could produce widely varying seepage durations and rates, depending on recent rainfall activity and other hydrogeologic characteristics. These perched groundwater sources are often not linked to the more continuous relatively stable groundwater table that typically occurs at greater depths (AMEC 2014), so facility construction and operation would not adversely affect groundwater quality. However, the building foundations would likely require dewatering of the perched groundwater and saturated soil conditions during and after construction. A temporary pump system would be used to dewater the foundation shafts before pouring concrete. A passive subsoil drainage system of perforated drainage tile on aggregate and sump pumps would be installed to remove seepage from around the installed foundation piers and other below-grade structures such as elevator pits. Groundwater that collects in the sump would be conveyed to the storm sewer system pipes and discharged to the surface drainage ditch in the Watterson Parkway right of way. The discharge of groundwater to surface water would be permitted in accordance with the Kentucky Pollutant Discharge Elimination System and would be monitored to ensure water quality standards are maintained to prevent adverse impacts from occurring.

All potable water needs would be supplied by the Louisville Water Company, which has indicated there is sufficient system capacity to support the replacement VAMC campus.

VA’s Master Construction Specification, Division 23 81 49, Ground-Source Heat Pumps specifies strict requirements related to the chemical and physical properties and limits on the toxicity of the heat transfer fluid used in closed loop geothermal systems at VA facilities. The specification also requires installation of an Underwriter Laboratories-listed leak detection system with a sensor probe, control panel, and LED indicators. Adherence to these requirements would ensure no significant impact to groundwater due to operation of the geothermal system.

4.5.3 Alternative B: St. Joseph Site

4.5.3.1 Construction

Under Alternative B, construction activities would include site grading and preparation, which would disturb exposed subsurface soils. Approximately 35 acres could be disturbed at the St. Joseph Site, although greater area could be disturbed due to the larger size of the St. Joseph Site and potential differences in site layout and access.

The St. Joseph Site includes two small wetlands and a stream that connects the two wetlands in the northern portion of the project area. The stream is a tributary of a tributary of Floyds Fork; this stream is not a special use water. The entrance and the road connecting the final project to Factory Lane would cross these areas and could impact the unnamed tributary. The USACE, who would be managing construction activities, would coordinate with the Kentucky Division of Water (Sections 401 and 404) to obtain the necessary permits, if required, and determine whether mitigation may be required for potential impacts to the stream and wetlands.

In general, protection of stormwater and groundwater resources would be similar to that described for Alternative A and would result in similar impacts. Both sites would have to meet the same requirements, although the larger St. Joseph Site could more easily allow the construction of retention areas, etc. Potential impacts to water quality due to stormwater runoff from the construction site are predicted to be localized and negligible with implementation of the required control plans. Blasting activities, if needed,
would not be expected to impact groundwater resources, and impacts to groundwater resources resulting from construction of geothermal bores would be negligible.

4.5.3.2 Operation

Under Alternative B, operation of a facility similar to that in Alternative A would occur. Impervious surfaces would increase compared to existing site conditions, requiring management of increased stormwater flows. The larger size of the St. Joseph Site (compared to the Brownsboro Site) would accommodate the development of surface and subsurface detention basins similar to those described for Alternative A, protecting existing site drainages and offsite hydrology. Impacts to groundwater resources would be negligible, consistent with the descriptions provided for Alternative A.

4.5.4 Alternative C: No Action

4.5.4.1 Construction

No construction activities would occur under Alternative C. There would be no construction-related adverse impacts to hydrology and water quality.

4.5.4.2 Operation

Continuing use of the existing facilities would have no impacts to hydrology and water quality.
4.6 Wildlife and Habitat

4.6.1 Evaluation Criteria

Impacts to wildlife and habitat are based on (1) the legal, commercial, recreational, ecological, or scientific importance of the resource; (2) the proportion of the resource that would be affected relative to its occurrence in the region; (3) the sensitivity of the resource to the proposed activities; and (4) the duration of ecological effects. An adverse impact to wildlife or habitat would be identified in the case of a violation of the laws and regulations pertaining to biological resources, if species or habitats of high concern are adversely affected over relatively large areas, or if disturbances cause reductions in population size or distribution of a species of special concern. A habitat perspective is used to provide a framework for analysis of general classes of effects such as those caused by due to removal of critical habitat, noise, or human disturbance.

Section 7 of the Endangered Species Act requires consultation with the U.S. Fish and Wildlife Service (FWS) to ensure that a federal action is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of designated critical habitat. For purposes of this evaluation, an impact would be significant if the viability of protected species or habitat is altered, migratory birds are harmed, or the abundance or distribution of common wildlife and habitat is substantially changed.

Ground disturbance and noise associated with construction of a new VAMC might directly or indirectly cause potential effects on wildlife and habitat. Direct effects from ground disturbance were evaluated by identifying the types of potential ground-disturbing activities and area affected in comparison to the extent of existing resources. Mortality of individuals, habitat removal, and damage or degradation of habitats are impacts that might be associated with ground-disturbing activities. By itself, noise associated with these alternatives is not likely to be of sufficient magnitude to result in the direct loss of individuals or reduce reproductive output. Effects assessment considered the number of individuals or protected species involved, amount of habitat affected, relationship of the area of potential effect to total available habitat within the region, type of stressors involved, and magnitude of the effects.

To evaluate effects to biological resources, the alternatives are reviewed with respect to the following criteria to determine whether any activities have the potential to directly or indirectly result in the following:

- Cause displacement of terrestrial or aquatic communities or loss of habitat
- Diminish the value of habitat for wildlife or plants
- Interfere with the movement of native resident or migratory wildlife species
- Conflict with applicable management plans for terrestrial, avian and aquatic species and their habitat
- Cause the introduction of noxious or invasive plant species
- Diminish the value of habitat for fish species
- Cause a decline in native fish populations
- Affect or displace endangered, threatened, or other special status species
- Cause encroachment on or affect designated critical habitat of a federally listed species
4.6.2 Alternative A: Brownsboro Site

4.6.2.1 Construction

Construction activities would displace common wildlife that inhabit or use the Brownsboro Site for nesting, foraging, or cover and potentially cause direct mortality of less mobile subterranean species, such as moles. The typical terrestrial wildlife species that could be impacted are widely distributed; thus, loss of some individuals and habitat would not measurably impact population abundance or distribution throughout their range.

Surface disturbance and construction activities could facilitate the establishment of non-native noxious weeds, such as thistles and foxtail. Aggressive noxious weed species could become established on disturbed, bare ground surfaces but could be controlled with best management practices. Measures that would be employed to minimize wind erosion would also avoid noxious weed infestations, such as minimizing the amount of exposed soils at any given time during construction activities, quickly revegetating disturbed areas following completion of activities, and maintaining landscaping during the campus operation. Monitoring and eradication will also be implemented, as needed, to reduce noxious weeds from invading the project site after ground disturbance occurs and before landscaping is installed.

If clearing the site to begin proposed construction was scheduled to occur during bird breeding season (generally April through July), any migratory bird found nesting on the project site could be impacted. To protect migratory birds if construction is scheduled to begin between April and July, the project site will be surveyed by a qualified biologist to confirm the absence of nests and nesting activity. If found, active nests (containing eggs or young) will be avoided until they are no longer active or the young birds have fledged. The Kentucky Department of Fish and Wildlife Resources will be contacted for guidance on appropriate avoidance measures for specific species and distances to keep away from active nests.

As described in Section 3.6.2.1, the Brownsboro Site does not contain suitable habitat for the Indiana bat, running buffalo clover, or Kentucky glade cress, and thus there would be no impacts to these federally protected species from construction of the proposed VAMC. However, the recently listed northern long-eared bat can roost in much smaller trees than those utilized by the Indiana bat, and the few trees on the site could potentially provide roosting habitat for the northern long-eared bat. To avoid impacts to roosting northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any northern long-eared bats from the site. These actions would be coordinated in consultation with the Kentucky Ecological Services field office of the FWS.

While these efforts would avoid direct impacts to northern long-eared bats that could be using the site during the summer, there is still the potential for indirect effects that could occur due to loss of habitat (for roosting and foraging). Given the small number of trees on the site, the effects on habitat loss are expected to be minor. VA recently completed northern long-eared bat 4(d) rule streamlined consultation. A final 4(d) rule for the species was published on January 14, 2016. While this project may affect the northern long-eared bat, FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to this project is not prohibited under the final 4(d) rule (50 CFR §17.40(o)). No further consultation is required for the northern long-eared bat (FWS, 2017).
4.6.2.2 Operation

No impacts to wildlife and habitat specific to the operation of a replacement Louisville VAMC at the Brownsboro Site are expected.

4.6.3 Alternative B: St. Joseph Site

4.6.3.1 Construction

Construction activities would displace common wildlife that inhabit or use the St Joseph Site for nesting, foraging, or cover and potentially cause direct mortality of less mobile subterranean species, such as moles. The typical terrestrial wildlife species that could be impacted are widely distributed; thus, loss of some individuals and habitat would not measurably impact population abundance or distribution throughout their range.

Surface disturbance and construction activities could facilitate the establishment of non-native noxious weeds, such as thistles and foxtail. Aggressive noxious weed species could become established on disturbed, bare ground surfaces but could be controlled with best management practices. Measures that would be employed to minimize wind erosion would also avoid noxious weed infestations, such as minimizing the amount of exposed soils at any given time during construction activities, quickly revegetating disturbed areas following completion of activities, and maintaining landscaping during the campus operation. Monitoring and eradication will also be implemented, as needed, to reduce noxious weeds from invading the project site after ground disturbance occurs and before landscaping is installed.

If clearing the site to begin proposed construction was scheduled to occur during bird breeding season (generally April through July), any migratory bird found nesting on the project site could be impacted. To protect migratory birds if construction is scheduled to begin between April and July, the project site will be surveyed by a qualified biologist to confirm the absence of nests and nesting activity. If found, active nests (containing eggs or young) will be avoided until they are no longer active or the young birds have fledged. The Kentucky Department of Fish and Wildlife Resources will be contacted for guidance on appropriate avoidance measures for specific species and distances to keep away from active nests.

As described in Section 3.6.2.1, the St. Joseph Site contains suitable habitat for the Indiana bat and northern long-eared bat. To avoid impacts to roosting Indiana or northern long-eared bats, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of protected bat species from the site. These actions would be coordinated in consultation with the Kentucky Ecological Services field office of the FWS.

While these efforts would avoid direct impacts to the Indiana bat and northern long-eared bats that could be using the site during the summer, there is still the potential for indirect effects that could occur due to loss of habitat (for roosting and foraging). Because the site is in potential habitat for both species, consultation with the FWS indicated that a presence/absence survey is appropriate at this location. This would be conducted for the Indiana bat, such that if probable absence of Indiana bats is supported by an approved survey, trees within the project area may be removed at any time of year, without negatively impacting these species. If these species are captured and/or detected during survey efforts, additional coordination with the FWS would be necessary. In the case of the northern long-eared bat, VA recently completed northern long-eared bat 4(d) rule streamlined consultation. A final 4(d) rule for the species was published on January 14, 2016. While this project may affect the northern long-eared bat, FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to
this project is not prohibited under the final 4(d) rule (50 CFR §17.40(o)). No further consultation is required for the northern long-eared bat (FWS 2017).

As directed by FWS (2011), alteration of habitat at the St. Joseph Site would require an onsite inspection for the presence of running buffalo clover. A 2012 field survey did not find this species onsite, but did identify it in three locations just offsite (TTL 2012). Due to the intervening time, a new field survey for running buffalo clover would be conducted prior to site clearing under Alternative B. VA would coordinate and consult with the Kentucky Ecological Services field office of the FWS on field methods for the survey and specific requirements to fully comply with Section 7 of the Endangered Species Act if this plant species is identified onsite in areas proposed for disturbance.

The St. Joseph Site does not contain critical habitat for Kentucky glade cress; see Section 3.6.2.2. Thus, there is no potential for adverse effects to this plant species.

4.6.3.2 Operation

If the pre-construction field survey identified running buffalo clover onsite and/or continued presence in adjacent areas, VA would develop and implement a management plan to ensure ongoing site operation would not affect any individuals of this plant species remaining onsite or adjacent. The plan would address, at minimum, procedures to be followed during any future clearing of undisturbed areas, measures to be followed during landscape management in perimeter areas adjacent to undisturbed areas, and procedures to be followed during broadcast (include turf management) or targeted herbicide treatments to ensure no drift/overspray to undisturbed areas that may provide habitat for running buffalo clover. The plan and related consultation would be coordinated with the Kentucky Ecological Services field office of the FWS to ensure VA compliance with Section 7 of the Endangered Species Act.

No other potential impacts to wildlife and habitat specific to the operation of a replacement Louisville VAMC at the St. Joseph Site are expected.

4.6.4 Alternative C: No Action

4.6.4.1 Construction

No construction-related impacts would occur under Alternative C, as there would be no construction at the Zorn Avenue location. Future development by others of either the Brownsboro Site or St. Joseph Site would be associated with similar potential impacts to wildlife and habitat as identified for VA development under Alternatives A and B.

4.6.4.2 Operation

There would be no impact to wildlife or habitat as a result of continuing operation of the existing Robley Rex VAMC on Zorn Avenue under the No Action alternative. Impacts from operation of future development by others of either the Brownsboro Site or St. Joseph Site would depend on the type of development and, in particular, could be associated with a potential for impacts to running buffalo clover at the St. Joseph Site.
4.7 Noise

To assess the potential short-term noise impacts from construction, sensitive receptors and their relative levels of exposure were identified. Construction noise was predicted using the Roadway Construction Noise Model (FHWA 2008). Noise levels of specific construction equipment and resulting noise levels at representative locations were calculated.

Default values for equipment specification sound levels and usage factors were used in modeling predicted noise levels. It was assumed that all equipment is in use simultaneously (a conservative assumption overestimating predicted noise levels) and the construction site is surrounded by a noise barrier with some gaps (providing an estimated noise shielding of five A-weighted decibels [dBA]). Outdoor noise levels were predicted at distances from the source equipment of 100 feet and 500 feet. Figures 4.7-1 through 4.7-4 provide the model results.

For construction activities, the following pieces of equipment were assumed to potentially be in use:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>Flat bed truck</td>
</tr>
<tr>
<td>Compactor (ground)</td>
<td>Front end loader</td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>Generator</td>
</tr>
<tr>
<td>Concrete mixer truck</td>
<td>Grader</td>
</tr>
<tr>
<td>Concrete pump truck</td>
<td>Man lift</td>
</tr>
<tr>
<td>Concrete saw</td>
<td>Pickup truck</td>
</tr>
<tr>
<td>Crane</td>
<td>Pneumatic tools</td>
</tr>
<tr>
<td>Dozer</td>
<td>Pumps</td>
</tr>
<tr>
<td>Dump truck</td>
<td>Scraper</td>
</tr>
<tr>
<td>Excavator</td>
<td>Warning horn</td>
</tr>
</tbody>
</table>

The predicted equivalent continuous noise level (Leq) for construction activities at a distance of 100 feet is 81.0 dBA and at a distance of 500 feet is 67.0 dBA.

At distances from the noise-generating activities of greater than 2,000 feet (0.38 miles), predicted noise levels are not significantly above measured background sound levels and would not likely have an adverse impact on receptors.

Ground-borne vibration impacts from construction activities were assessed based on existing documentation (such as for vibration levels produced by specific construction equipment operations) and the distance of sensitive receptors from the given source. Vibration levels were predicted, and impacts were evaluated against the established thresholds.

4.7.1 Evaluation Criteria

An alternative was considered to result in an adverse impact related to noise if it resulted in either of the following:

- the exposure of receptors to construction noise levels in excess of U.S. Environmental Protection Agency (EPA) standards, as listed in Table 3.7-2 in Section 3.7.1.1
- exposure of persons or structures to excessive ground-borne vibration
Figure 4.7-1. Brownsboro Site Construction Noise Estimates at 100 Feet from Source.

Key: dBA = A-weighted decibel. Leq = equivalent continuous noise level. Lmax = maximum noise level.
Roadway Construction Noise Model (RCNM), Version 1.1

Report date: 12/4/2015
Case Description: Louisville VAMC EIS - Construction Activities

Receptor #2

<table>
<thead>
<tr>
<th>Description</th>
<th>Land Use</th>
<th>Daytime</th>
<th>Evening</th>
<th>Night</th>
<th>Baselines (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brownsboro @ 500 ft</td>
<td>Residential</td>
<td>54.3</td>
<td>40</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Device Usage (%)</th>
<th>Spec Lmax (dBA)</th>
<th>Actual Lmax (dBA)</th>
<th>Receptor Estimated Lmax (dBA)</th>
<th>Distance (feet)</th>
<th>Shielding (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>No 40</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor (ground)</td>
<td>No 20</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>No 40</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Mixer Truck</td>
<td>No 40</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>No 20</td>
<td>82</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>No 20</td>
<td>90</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane</td>
<td>No 16</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dune</td>
<td>No 40</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump Truck</td>
<td>No 40</td>
<td>84</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavator</td>
<td>No 40</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Bed Truck</td>
<td>No 40</td>
<td>84</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front End Loader</td>
<td>No 40</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td>No 50</td>
<td>82</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td>No 40</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man Lift</td>
<td>No 20</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>No 40</td>
<td>55</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>No 50</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>No 50</td>
<td>77</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scraper</td>
<td>No 40</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning Horn</td>
<td>No 5</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Calculated Lmax (dBA)</th>
<th>Day</th>
<th>Evening</th>
<th>Night</th>
<th>Noise Limits (dBA)</th>
<th>Day</th>
<th>Evening</th>
<th>Night</th>
<th>Noise Limit Exceedance (dBA)</th>
<th>Day</th>
<th>Evening</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>55</td>
<td>51</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Compressor (ground)</td>
<td>55</td>
<td>48</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>55</td>
<td>51</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Concrete Mixer Truck</td>
<td>60</td>
<td>56</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>57</td>
<td>50</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>65</td>
<td>58</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Crane</td>
<td>60</td>
<td>52</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dune</td>
<td>60</td>
<td>56</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>59</td>
<td>55</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Excavator</td>
<td>60</td>
<td>56</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Flat Bed Truck</td>
<td>59</td>
<td>55</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Front End Loader</td>
<td>55</td>
<td>51</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Generator</td>
<td>57</td>
<td>54</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Grader</td>
<td>60</td>
<td>56</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Man Lift</td>
<td>60</td>
<td>53</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>30</td>
<td>26</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>60</td>
<td>57</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pumps</td>
<td>52</td>
<td>49</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Scraper</td>
<td>60</td>
<td>56</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Warning Horn</td>
<td>60</td>
<td>47</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>67</td>
<td>90</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Calculated Lmax is the Loudest value.

Key: dBA = A-weighted decibel. L\text{eq} = \text{equivalent continuous noise level}. L_{\text{max}} = \text{maximum noise level}.

Figure 4.7-2. Brownsboro Site Construction Noise Estimates at 500 Feet from Source.
Roadway Construction Noise Model (RCNM), Version 1.1

<table>
<thead>
<tr>
<th>Description</th>
<th>Impact Device</th>
<th>Usage (%)</th>
<th>Spec Lmax (dBA)</th>
<th>Actual Lmax (dBA)</th>
<th>Receptor Distance (feet)</th>
<th>Estimated Shielding (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>No</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Compactor (ground)</td>
<td>No</td>
<td>20</td>
<td>80</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>No</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Mixer Truck</td>
<td>No</td>
<td>40</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>No</td>
<td>20</td>
<td>82</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>No</td>
<td>20</td>
<td>90</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Crane</td>
<td>No</td>
<td>16</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dumper</td>
<td>No</td>
<td>40</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Damp Truck</td>
<td>No</td>
<td>40</td>
<td>84</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Excavator</td>
<td>No</td>
<td>40</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flat Bed Truck</td>
<td>No</td>
<td>40</td>
<td>84</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Front End Loader</td>
<td>No</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td>No</td>
<td>50</td>
<td>82</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td>No</td>
<td>40</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Man Lift</td>
<td>No</td>
<td>20</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>No</td>
<td>40</td>
<td>55</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>No</td>
<td>50</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>No</td>
<td>50</td>
<td>77</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Scraper</td>
<td>No</td>
<td>40</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Warning Horn</td>
<td>No</td>
<td>5</td>
<td>85</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Calculated (dBA)</th>
<th>Day</th>
<th>Noise Limits (dBA)</th>
<th>Noise Limit Exceedance (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compactor (ground)</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dumper</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damp Truck</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavator</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Bed Truck</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front End Loader</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man Lift</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scraper</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning Horn</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | | | | |

*Calculated Lmax is the Loudest value.

Key: dBA = A-weighted decibel. L_{eq} = equivalent continuous noise level. L_{max} = maximum noise level.

Figure 4.7-3. St. Joseph Site Construction Noise Estimates at 100 Feet from Source.
Table 4.7-4. St. Joseph Site Construction Noise Estimates at 500 Feet from Source.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Spec Lmax (dBA)</th>
<th>Actual Lmax (dBA)</th>
<th>Distance (feet)</th>
<th>Shielding (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Compactor (ground)</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Compressor (air)</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Mixer Truck</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>82</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Concrete Saw</td>
<td>90</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Crane</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dozer</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dump Truck</td>
<td>84</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Excavator</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flat Bed Truck</td>
<td>84</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Front End Loader</td>
<td>80</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td>82</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Man Lift</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>77</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Scraper</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Warning Horn</td>
<td>85</td>
<td>500</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Key: dBA = A-weighted decibel. \(L_{eq} \) = equivalent continuous noise level. \(L_{max} \) = maximum noise level.

Figure 4.7-4. St. Joseph Site Construction Noise Estimates at 500 Feet from Source.
4.7.2 Alternative A: Brownsboro Site

4.7.2.1 Construction

Under Alternative A, construction activities associated with the construction of a new VAMC at the Brownsboro Site would occur. These activities would be accompanied by a conservatively predicted short-term noise level increase to approximately 81.0 dBA at 100 feet from the source and 67.0 dBA at 500 feet from the source (comparable to traffic sound levels from a nearby freeway). The increase in noise levels in the vicinity of the construction activities would be short-term but noticeable. As the distance from the source is increased, the noise levels attributable to the construction activities would continue to decrease as they approach existing background sound levels.

Construction is expected to take just over 4 years, beginning in the Fall of 2018 and extending to the winter of 2022. The first phase would be rough grading, site preparation, rock removal, and geothermal bore installation. The mass removal of rock would be needed in most areas to install utilities, provide subgrade, and construct foundations. The central utility plant would be the first structure built, followed by the main hospital and the laundry facility. The Veterans Benefits Administration building, parking garages, and site improvements (landscaping, perimeter security fence) would be constructed later in the construction period.

The perceived impacts from the increase in noise levels would depend on the receptor and site-specific conditions (including distance from the source and sound shielding). The predicted increases in noise levels would be consistent with typical urban construction projects. Outdoor activities would be scheduled to cease at sunset, and proper equipment maintenance and noise shielding would minimize noise level increases from construction activities. Sound levels in the immediate vicinity of the construction activities averaged over an entire day may approach the EPA-recommended noise level standards.

Construction activities would include vibration-producing activities such as excavation, grading, basement excavation, and clearing; the need for blasting is not anticipated. Depending on the specific construction equipment used and operations involved, short-term increases in ground vibration may result. The increase in vibration levels in the vicinity of the construction activities would be short-term but noticeable. Outdoor activities would cease at sunset and would be anticipated to be a generally minor but occasionally moderate disturbance to neighboring receptors.

Impact pile driving (and blasting in the unlikely event it is needed) noise consists of a series of peak noise events. A blasting event would produce a short noise like a thunderclap (120 dBA) that could be audible at greater distances. The amount of noise generated by the blast depends primarily on the amount of explosives used, but is typically around 94 dBA and could be as high as 126 dBA at 50 feet from the blast. Blasting might possibly be needed for rock removal; in that case, the requirements of Kentucky Revised Statute 351.330 pertaining to explosives would be followed as described in Section 4.4.2.1. Any possible blasting activities may cause an adverse noise impact to nearby receptors. If blasting is determined to be needed, VA/USACE would notify immediately adjacent receptors in advance of the blasting schedule (in accordance with the statute) to minimize the startle effect of the blast noise, and to offer possible precautions, such as staying indoors, that receptors could take to minimize temporary adverse noise impacts. See Section 5.7 for a list of the specific measures VA would implement to minimize potential noise impacts from blasting operations.

There are four sensitive receptors within 0.5 mile of the site: Zachary Taylor National Cemetery, Brownsboro Inn and two schools (Ballard High School and Wilder Elementary). The Brownsboro Inn is within the 2,000-foot (0.38 mile) distance within which predicted noise levels are likely to have an
adverse impact on receptors. Louder decibel activities may be heard and felt (vibrations) potentially by all the sensitive receptors within a 2-mile radius of the site, however (see full listing in Table 3.7-4). The disruptions would be infrequent and last only a few sections. There are also numerous private residences within the Crossgate community that lie immediately to the east and south of the Brownsboro property. Because Brownsboro is a small site, surrounding communities may experience adverse noise and vibration impacts potentially moderate in magnitude, although short-term in nature.

While blasting is not expected to be required at the Brownsboro Site, in the unlikely even that it is - given the close proximity of some residences - VA has agreed to provide advance written notice of the blasting schedule to the cities of Crossgate and Graymoor-Devondale and area residents immediately adjacent to the site boundary. The notice would include a point of contact for requesting a pre-blast survey as well as for additional questions related to any blasting activities. In particular, residents immediately adjacent to the project site would have the opportunity to request a pre-blast survey of their structure though the contractor would determine on a case-by-case basis whether conditions warrant such a survey. Finally, given the potential for construction related noise concerns to approach or exceed the noise abatement criteria and the fact that construction activities such as pile driving and blasting events may occur, VA would establish a mechanism for reporting construction related noise concerns. VA’s planned noise mitigation measures are outlined in more detail in Section 5.7.

The daily commute of construction workers and deliveries of construction materials to the project site would add to traffic noise in the area. The size of the workforce would vary throughout the construction schedule based on the types of construction activities; upwards of 1,500 workers could be communting to the project site on a given day. Temporary increases in traffic noise would vary in location based on the travel routes of construction workers and delivery vehicles. It is likely that most construction-related vehicles would access the project site from Watterson Expressway, thereby limiting most traffic noise increases to the commercial business area at the Brownsboro Road/US 42 interchange. The increase in traffic from construction-related vehicles would not likely increase ambient noise levels by more than 3 dBA, which would not be perceptible to the human ear and therefore would not exceed typical noise thresholds.

Construction-related noise impacts would be adverse, short-term, and potentially moderate in magnitude (approaching EPA threshold levels), depending on the receptor type and proximity to the project location. Construction-related vibration impacts would also be adverse, short-term, and potentially moderate in magnitude, depending on the receptor type and proximity to the project location.

4.7.2.2 Operation

Routine operation of the new VAMC facility would not significantly increase sound levels from existing background levels – background sound level measurements at the existing Zorn Avenue VAMC are similar to background sound levels at the Brownsboro Site.

Traffic-related noise levels may increase in the vicinity of the proposed new facilities, but would not be expected to increase disproportionately from current levels typical of urban settings. Traffic circulation for passenger and delivery vehicles on the VAMC campus is designed to minimize noise near the residential areas to the east and south of the project site. Delivery trucks, which are the louder vehicle noise sources, would likely access the campus from Watterson Expressway and be routed to the west side of the campus. Passenger vehicles and TARC and other shuttle buses would be routed along the east side (refer to Figure 2-6, Proposed Site Plan for Alternative A). Parking structures can be a source of annoyance to neighboring uses due to automobile engine start-ups and acceleration, and the potential activation of car alarms. The north parking garage is anticipated to be more heavily used by visiting patients, while the south parking garage is anticipated to be used by the site workforce (only one vehicle
trip per day per parking space). As such, the location of the higher-turnover north parking garage farther away from adjacent residential areas would reduce the potential noise impacts from the parking garages. Also, the landscaping (trees) adjacent to the residential areas could attenuate traffic noise. Overall, adverse noise impacts to offsite receptors from onsite traffic would be minor to moderate.

Stationary sources of noise would primarily be the equipment associated with the central utility plant and laundry facility. These buildings would be located along the west side of the project site closest to Watterson Expressway. Any equipment not inside the buildings would be shielded from residential areas by other buildings and could also be attenuated by landscaping and thus would not adversely affect receptors.

Operation-related noise impacts would be minor. Operation-related vibration impacts would not be expected.

4.7.3 Alternative B: St. Joseph Site

4.7.3.1 Construction

Under Alternative B, construction activities associated with the construction of a new VAMC at the St. Joseph Site would occur. These activities would be accompanied by a conservatively predicted short-term noise level increase to approximately 81.0 dBA at 100 feet from the source and 67.0 dBA at 500 feet from the source (comparable to traffic sound levels from a nearby freeway). The increase in noise levels in the vicinity of the construction activities would be short-term but noticeable. As the distance from the source is increased, the noise levels attributable to the construction activities continue to decrease as they approach existing background sound levels.

Construction-related noise impacts would be similar to those described for Alternative A. The St. Joseph Site is a larger parcel, and the facility could be positioned to increase the distance between the facility and neighboring residential receptors. Construction-related noise impacts would be adverse, short-term, and potentially moderate in magnitude (approaching EPA threshold levels), depending on the receptor type and proximity to the project location. Construction-related vibration impacts would also be adverse, short-term, and potentially moderate in magnitude, depending on the receptor type and proximity to the project location.

There are three sensitive receptors within 0.5 mile of the site: Jewish Hospital Medical Center Northeast and two schools (Covenant Classical Academy and Strayer University Louisville campus). The hospital and Covenant Academy both lie within the 2,000-foot (0.38 mile) distance within which predicted noise levels are likely to have an adverse impact on receptors. Louder decibel activities such as blasting may be heard and felt (vibrations) potentially by all the sensitive receptors within a 2-mile radius of the site, however (see full listing Table 3.7-5). There are two developments along the southeast and southwest corners of the site that may be more adversely affected by construction noise; the closest development in the southwest corner also lies next to Interstate 265. In general, however, residents living near the St. Joseph site would be expected to experience slightly less impact than at Brownsboro given its larger parcel size and buffer area between the proposed VAMC and surrounding residences.

There is still the potential for construction related noise concerns to approach or exceed the noise abatement criteria at the St. Joseph Site, however, so VA would implement the same mitigation measures for noise impacts as described for Alternative A (see Section 4.7.2.1); mitigation measures are discussed in Section 5.7.
4.7.3.2 Operation

Routine operation of the new VAMC facility would not significantly increase sound levels from existing background levels – background sound level measurements at the existing Zorn Avenue VAMC are similar to background sound levels at the St. Joseph Site. Operation-related noise impacts would be similar to those described for Alternative A. Operation-related vibration impacts would not be expected.

4.7.4 Alternative C: No Action

4.7.4.1 Construction

Under the No Action alternative, VA would not conduct any construction and thus would not cause any construction-related noise impacts. If a new VAMC is not constructed at the Brownsboro Site or the St. Joseph Site, future development by others could have similar construction noise impacts as described for Alternative A or B.

4.7.2.2 Operation

Veterans health care services would continue at the existing Robley Rex VAMC; therefore, no operation-related impacts to current noise levels would occur. Future development by others of the Brownsboro Site or St. Joseph Site could have operational noise impacts, depending on the specific type of development.
4.8 Land Use

4.8.1 Evaluation Criteria

Federal agencies must consider local zoning laws for new building construction (40 United States Code 619(b)), even though local governments cannot regulate activities of the federal government on federally owned land without a clear statutory waiver to the contrary. This concept is based upon the Supremacy Clause (Article VI) of the U.S. Constitution. (VA actions that would occur on non-federal land are subject to the regulatory requirements of the landowner, including local plans and ordinances pertaining to land use and zoning.)

The evaluation of land use impacts focuses on current land use plans and zoning. General compatibility with existing and future land use designations and zoning design standards is the basis to indicate the potential for land use impacts. Adverse land use impacts are identified if the construction and operation of a new VAMC would:

- Be inconsistent with current or planned future land uses and community goals for land use
- Alter the character and use of the land in relation to surrounding uses
- Conflict with zoning designations or design standards

The alternatives evaluated under the EIS were identified through a rigorous and lengthy process that began prior to VA’s formal implementation of the Sustainable Locations Program. Nonetheless, VA’s overall process and identification of alternatives, detailed in Section 2.1, was consistent with the requirement of the Sustainable Locations Program to balance considerations with respect to land use, built environment, cost, security, mission, etc.

4.8.2 Alternative A: Brownsboro Site

4.8.2.1 Construction

Construction of the proposed VAMC facilities could cause temporary disturbances to adjacent land uses and users. Construction for entrance road access and for installing or upgrading utilities in roadways leading to the site could temporarily affect access to nearby retail and commercial businesses and residential areas, which could be inconvenient for customers and residents. The intensity of any adverse impact would depend on the extent and duration of the inconvenience. Effects, if any, on access to nearby locations during utility upgrades or entrance road construction would be temporary.

4.8.2.2 Operation

The proposed VAMC would result in a significant change from vacant, undeveloped land to full development of the Brownsboro Site which would result in a major impact of altering the character and use of a vacant site to full development use. Previous plans to rezone the vacant Brownsboro Site as a planned development district to accommodate The Midlands proposed development would have introduced mixed land uses, including multiple-family residential buildings, retail and office buildings, and a hotel that also would have altered the character and use of a vacant site to full development. Given how much of the surrounding area is developed, future development of the Brownsboro property would be expected with or without the proposed VAMC, and whether or not VA was the entity developing the site. With respect to proposed building height, the structures proposed for the VAMC campus would likely be higher than for a mixed use development plan, and therefore could result in greater adverse impact to adjacent land use. During the conceptual design phase of the new VAMC campus, VA made every effort to adjust the length and height of the buildings and modify the location and orientation of
structures on the Brownsboro Site to be less intrusive compared to adjacent land uses. The taller buildings were placed along the north and west sides of the site, farthest from residential areas. Traffic circulation for service vehicles and ambulances follows the north and west sides to also be farther from the residential areas along the east and south sides of the site. These footprint modifications of the buildings provided more flexibility and options for landscaping plans that meet setback requirements for transitional zones, noise, and security.

VA, as a government entity, is not subject to these requirements. The Louisville Metro Planning and Design Services Office also recognized this situation and granted a waiver to the VA in April 2012. The Amendment to Certificate of Land Use Restriction dated 23 April 2012, documents VA’s contact with the Louisville Metro Planning and Design Services office and documents that the “Binding Elements and approved development plan in Docket No. 9-15-06 do not apply to the use of the Subject Property by the Federal Government, or any agency or instrumentality thereof, including the Department of Veterans Affairs for any governmental purpose, including a VA hospital/medical center, for and during the time the Subject Property is used for a governmental purpose”. VA’s approach has been to voluntarily consider local land use requirements to the extent possible.

Hospitals, clinics, and other medical facilities are conditional land uses within residential, commercial, and industrial zoning districts. The Land Development Code requirements for these types of medical facilities include a minimum building setback of 30 feet from the property boundary. Other provisions of a conditional use include compatibility with form district transition zone design standards and landscaping. The transition zone of a town center form district adjacent to a neighborhood form district covers a linear distance of 200 feet from the property boundary.

The proposed VAMC buildings would be set back from the property boundary approximately 200 feet and 100 feet along the residential areas to the east and south, respectively (see Figures 3.8-1 and 4.1-1), which is consistent with the Land Development Code by exceeding the minimum setback requirements of 25 feet for adjacent R-4 and R-5 zoning and 30 feet for a conditional use. The conceptual design for the VAMC campus shows landscape buffers extending a minimum of 35 feet inside the perimeter fence adjacent to residential areas, which would be comparable to the transition zone standard of 25 to 35 feet for landscaping in a town center form district. A perimeter fence and landscaping are considered compatible design standards for the buffer between residential uses and the more intense uses of a town center form district (LMG 2000, 2006). Thus, the conceptual design for building setbacks, perimeter fence, and landscape buffer would be compatible with the existing town center form district zoning of the site.

Maximum building height is 120 feet within a town center form district and 45 feet within the transition zone of that form district. The height limitation would not apply to the water tower since it is not considered a building that is subject to development code provisions. The rooftop mechanical and electrical penthouse on the west bar of the proposed VAMC buildings would be the tallest height at 162 feet, which would exceed the maximum height of a town center form district. A lower design height for the buildings would either require larger footprints or require the electrical and mechanical equipment be placed on the ground alongside the buildings. Either approach would result in the design and placement of the buildings and equipment closer (shorter setback distance) to the residential areas to the south and east. The south parking deck would extend approximately 85 feet into the transition zone; at 83 feet high, the parking deck would exceed the height limitation of 45 feet for the transition zone of a town center form district. Any decrease in the design height for the south parking deck would require a larger footprint and placement at the minimum setback distance of 30 feet from the property boundary. Lower heights and shorter setbacks would result in construction and daily operational activities that are closer and likely more disruptive to the adjacent residential areas to the south and east, compared to buildings that would exceed the height limitations but would be placed at the greater setback distances of 100 and 200 feet,
respectively. Even with the parking deck set closer to the south property boundary, the transition zone height limit could still be exceeded in order to accommodate the required parking spaces, traffic circulation through the campus, and security requirements for mission critical facilities.

The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations of a town center form district and its transition zone, and would therefore be considered an adverse impact to adjacent land use. The setbacks of the VAMC buildings and parking decks would more than exceed the minimum required distances from the property boundary and would therefore be compatible with the Land Development Code for a town center form district. The placement (setback) of the VAMC buildings and parking decks would not adversely impact adjacent land uses.

The proposed VAMC concept and site layout includes additional design features that are consistent with the policies and guidelines in the Cornerstone 2020 Comprehensive Plan for compatible adjacent land uses, including providing adequate parking while maintaining a greater setback distance, landscape buffer, and perimeter fence.

Consistency of VA’s site selection process with the Sustainable Locations Program has been addressed in Section 3.8. The proposed VAMC location, design and site plan at Brownsboro is also consistent with the requirements of the Sustainable Locations Program in that the site area is potentially pedestrian friendly, has the potential to accommodate multiple modes of transport (e.g., walking, biking, public transit), and is adjacent to existing employment centers and/or a suburban town center. It would also maximize use of available public infrastructure including sewer, water, public transit, etc. to the extent practicable.

4.8.3 Alternative B: St. Joseph Site

4.8.3.1 Construction

Impacts from construction at the St. Joseph site would be similar to the construction impacts described for Alternative A.

4.8.3.2 Operation

The zoning of the vacant St. Joseph site as single-family residential anticipates future change from prior agricultural use to development similar to the surrounding developed land uses. The possibility of a new VAMC would result in a change from vacant, undeveloped land to full development of the St. Joseph Site. The impact of altering the character and use of a vacant site to full development use would be major. However, the impact on nearby residences would not be as great as at the Brownsboro site given the larger buffer between the VAMC campus and the closest development (near the southwest corner of the site). Also, given other proposed plans to develop this site and the lot across the street (sold for residential development), future development of the site would be expected with or without the proposed VAMC, and whether or not VA was the entity developing the site.

As described for Alternative A, hospitals, clinics, and other medical facilities are conditional land uses within residential, commercial, and industrial zoning districts. The entrance to the new VAMC campus would be from the north off Factory Lane with the layout of the buildings primarily within the part of the site that is zoned as a neighborhood form district. The laundry, central utility plant, and south parking deck would be within the part of the site zoned as suburban workplace. The buildings would be set back approximately 250 feet from the nearest housing unit within the R-7 multiple-family residential zoning adjacent to the west property boundary. Along the east property boundary, the buildings would be set back approximately 250 to 500 feet from the R-4 single-family residential zoning and approximately 600 feet from the R-6 multiple-family residential zoning (see Figures 3.8-2 and 4.1-8). These distances are
compatible with the Land Development Code by exceeding the minimum setback requirements of 50 to
75 feet for non-residential use adjacent to residential zoning within a neighborhood form district, and 30
feet for a conditional use. If industrial uses in a suburban workplace form district include a loading dock
within 200 feet of adjacent residential zoning, the Land Development Code calls for a 50-foot landscape
buffer and 6-foot high berm along the property boundary. The loading dock and service area adjacent to
the laundry would be more than 200 feet from the west property boundary and slightly below grade. The
conceptual design for building setbacks would therefore be compatible with the existing neighborhood
and suburban workplace form districts zoning of the site.

The transition zone of a suburban workplace form district adjacent to a neighborhood form district covers
a linear distance of 200 feet from the property boundary. Because the buildings would be set back more
than 200 feet from the property boundary, the proposed layout of the VAMC campus on the St. Joseph
site would be compatible with transition zone standards for landscape buffers and perimeter fencing in a
suburban workplace form district and for a conditional use adjacent to residential zoning.

Maximum building height is 50 feet within a suburban workplace form district and 45 feet within the
transition zone, but 4 feet of additional height is allowed for every additional foot of setback. Maximum
non-residential building height within a neighborhood form district is 35 feet. The height limitation would
not apply to the water tower since it is not considered a building that is subject to development code
provisions. To be compatible with the suburban workplace form district height standards, the west bar of
buildings with the rooftop mechanical and electrical penthouse at 162 feet would have to be set back a
minimum of 228 feet from the property boundary. The layout of the campus on the site would set back the
buildings approximately 250 to 600 feet from the property boundary; therefore, the proposed VAMC
would also be compatible with the height limits within the suburban workplace form district design
standards.

The buildings would exceed the maximum height for a neighborhood form district and would therefore be
incompatible with neighborhood design standards. A lower design height for the buildings would either
require larger footprints or require the electrical and mechanical equipment be placed on the ground
alongside the buildings. This would result in the design and placement of buildings and equipment within
the transition zone and closer (shorter setback distance) to the adjacent residential areas. Lower heights
and shorter setbacks would result in construction and daily operational activities that are closer and
potentially disruptive to the adjacent residential areas, compared to buildings that exceed the height
limitations but would be placed at the greater setback distances of 250 to 600 feet.

The design heights of the VAMC buildings and parking decks would not be compatible with the height
limitations of a neighborhood form district, and would therefore be considered an adverse impact to the
adjacent residential land use. The setbacks of the VAMC buildings would more than exceed the minimum
required distances from the property boundary and would therefore be compatible with the Land
Development Code for neighborhood and suburban workplace form districts.

4.8.4 Alternative C: No Action

4.8.4.1 Construction

No construction is planned for the existing VAMC at the Zorn Avenue location; therefore, no
construction-related impacts to land use or zoning would occur. If a new VAMC is not constructed at the
Brownsboro Site or the St. Joseph Site, future development by others could have similar construction
impacts as described for Alternative A or B.
4.8.4.2 Operation

Veteran health care services would continue at the existing Robley Rex VAMC; therefore, no operation-related impacts to land use or zoning would occur. The residential zoning and neighborhood form district designation of the site would continue. Future development by others of the Brownsboro Site or St. Joseph Site could have similar operational impacts as described for Alternative A or B.
This page intentionally left blank.
4.9 Floodplains and Wetlands

4.9.1 Evaluation Criteria

Executive Order 11988, Floodplain Management, requires VA to avoid adverse impacts associated with occupancy and modification of floodplains to the extent possible, and avoid direct and indirect support of floodplain development wherever there is a practicable alternative. According to the VA Site Development Design Manual, development within the 100-year floodplain should be avoided or limited, with structures located in the floodplain only if absolutely necessary. For purposes of this evaluation, an impact to floodplains would be considered adverse if development impedes or redirects flood flows, no practicable alternative exists to development within a 100-year floodplain, or compliance with flood hazard reduction requirements is not technically or economically feasible.

Section 404 of the Clean Water Act requires authorization for activities that fill or disturb waters of the U.S, including wetlands. The USACE determines if a wetland is within their jurisdictional authority to regulate waters of the U.S. To be a jurisdictional wetland, it must meet the regulatory definition and be adjacent to other waters of the U.S. For purposes of this evaluation, an impact to wetlands would be considered adverse if the loss of a jurisdictional wetland cannot be avoided or if compensatory mitigation is not feasible, and USACE does not authorize the activity that fills or disturbs the wetland.

4.9.2 Alternative A: Brownsboro Site

The Brownsboro Site is not located within the 100-year or 500-year floodplain, and construction activities would not impact floodplains or impede flood flows. There are no wetlands present at the site, and the site is not adjacent to other waters of the U.S. Therefore, no floodplains, flood flows, or jurisdictional wetlands would be impacted by construction activities or site operations.

4.9.3 Alternative B: St. Joseph Site

The St. Joseph Site is not located within the 100-year or 500-year floodplain, and construction activities and site operations would not impact floodplains or impede flood flows.

Small wetland areas are present on the St. Joseph Site, as depicted in Figure 3.9-4 in Section 3.9.2. However, the site is sufficiently large to accommodate design and layout options for the proposed facility such that the wetlands could likely be protected from impacts. In the event that wetlands would be impacted by construction activities, the necessary permit(s) would be obtained from USACE and the Kentucky Department for Environmental Protection in compliance with Sections 401 and 404 of the Clean Water Act. As directed, VA would conduct any mitigation requirements to compensate for the lost function and value of wetlands either by creating or enhancing other wetlands onsite or at an offsite location through an established mitigation bank, or through an in-lieu fee program. Additional impacts to site wetlands from facility operation are not anticipated.

4.9.4 Alternative C: No Action

Under the No Action alternative, no construction or changes to operations are planned for the existing VAMC at the Zorn Avenue location; therefore, no impacts to floodplains or wetlands would occur at that location. If a new VAMC is not constructed at the Brownsboro Site or the St. Joseph Site, future development by others could have similar impacts as described for Alternative A or B.
This page intentionally left blank.
4.10 Socioeconomics

4.10.1 Evaluation Criteria

The socioeconomic analysis considers the economic conditions within the Louisville Metropolitan Statistical Area (MSA) in terms of population, educational attainment, housing, income, labor force and employment, property values, and general crime statistics. The evaluation includes a qualitative and quantitative analysis of various sources of data to predict project-related impacts within the Louisville MSA. An impact would be considered adverse if the alternative would result in any of the following conditions:

- Displace populations, residents, or businesses to accommodate construction
- Generate an economic loss or gain without capacity to absorb a decrease or increase
- Place demand on suitable housing that exceeds availability
- Induce growth without adequate supporting infrastructure

4.10.2 Methodology

For the purpose of assessing economic impacts related to construction expenditures, an input-output model (IMPLAN Pro® - version 3) was used. The input-output model was used to predict direct, indirect, induced, and total economic impacts that would occur within the Louisville MSA as a result of replacing the Robley Rex VAMC at the Brownsboro Site or St. Joseph Site, or continuing to operate from the Zorn Avenue location. The Louisville MSA consists of the 13-county Kentucky-Indiana region surrounding Louisville (see Section 3.10.2). The input-output models were developed to estimate economic impacts that would occur as a result of construction phase and operation phase expenditures. Economic impacts related to total output, value-added, employment, and labor income were assessed, and the top 10 most impacted industries were estimated for the Louisville MSA.

Input-output modeling describes commodity flows from producers to intermediate and final consumers. The total industry purchases of commodities, services, employment, compensation, value added, and imports are equal to the value of the commodities produced. Purchases for final use (final demand) drive the input-output model. Industries produce goods and services for final demand and purchase goods and services from producers. These other producers, in turn, purchase goods and services. This buying of goods and services (indirect purchases) continues until leakages from the region (imports and value added) stop the cycle. Indirect and induced effects (the effects of household spending) can be mathematically derived. The resulting sets of multipliers describe the change in output for each and every regional industry caused by a one-dollar change in final demand for any given industry.

For the purpose of this impact assessment, the following definitions are provided to better understand the types of economic impacts that are discussed in this section (IMPLAN 2015):

- Direct effects: The set of expenditures applied to the predictive model for impact analysis. It is a single or series of production changes or expenditures made by producers/consumers as a result of an activity or policy.
- Economic output effects: Economic output represents the value of industry production.
- Employment effects: Employment effects represent the number of jobs (both part-time and full-time) throughout the economy that are needed, directly and indirectly, to deliver a specific dollar value of final demand for a specific commodity.
• Indirect effects: The impact of local industries buying goods and services from other local industries. The cycle of spending works its way backward through the supply chain until all money leaks from the local economy, either through imports or by payments to value added.

• Induced Effects: The response by an economy to an initial change (direct effect) that occurs through re-spending income received by a component of value added.

• Input-output analysis: A type of applied economic analysis that tracks the interdependence among various producing and consuming sectors of an economy. More particularly, it measures the relationship between a given set of demands for final goods and services and the inputs required to satisfy those demands.

• Labor income effects: All forms of employment income, including employee compensation (wages and benefits) and proprietor income.

• Value added effects: The difference between an industry's or an establishment's total output and the cost of its intermediate inputs. It equals gross output (sales or receipts and other operating income, plus inventory change) minus intermediate inputs (consumption of goods and services purchased from other industries or imported). Value added consists of compensation of employees, taxes on production and imports less subsidies, and gross operating surplus.

4.10.3 Alternative A: Brownsboro Site

4.10.3.1 Construction

Construction of the replacement VAMC is expected to occur between November 2018 and 2022 followed by a six- to nine-month “activation” period before the hospital becomes fully operational in mid 2023. During this time, there would be short-term impacts to employment, housing, and the local economy due to construction expenditures and employment of the construction workforce.

It is estimated that replacing the VAMC would require construction phase expenditures of approximately $925 million (in 2015 dollars). This amount includes planning, design, peer reviews, constructability reviews, value engineering, construction, architecture/engineering construction period services, construction management, construction contingency, testing services, commissioning, market allowances, utility agreements, and municipal contracts.

The estimated number of construction workers that could be employed was derived from an input-output model using the construction phase expenditures ($925 million) as a basis for the model. Adjustments were made to evaluate the portion of this expenditure that can be attributable only to actual construction. It was assumed that 71 percent of construction phase expenditures would be spent on the actual construction. Based on the results on the input-output model, it was estimated that 3,324 full-time construction jobs would be created during the four-year construction period, or approximately 830 full-time construction jobs (on average) for each year of construction. Also, derived from this input-output model, it was predicted that construction phase expenditures would create approximately $211 million in labor income for the construction workforce, with average annual wages for the construction workers at approximately $63,478.

The annual average of 830 construction workers would add a relatively negligible increase to the total number of employed workers within the Louisville MSA as compared to recent workforce data; adding approximately 0.1 percent to the 594,609 employed persons in the Louisville MSA in 2014 (see Table 3.10-7). Average annual wages for construction workers ($63,478) would be substantially higher than median household income within the Louisville MSA ($47,798 for 2010) (see Table 3.10-6). It is anticipated that the construction wages would have a beneficial effect on personal income within
Louisville MSA. As these dollars are spent and re-spent locally, there would be beneficial indirect and induced effects within the Louisville MSA.

Given the size of the construction workforce (15,406 employees) within the Louisville Metro area (see Table 3.10-9), it is anticipated an adequate number of construction workers would be available for the project. The construction workforce residing in other nearby counties within the Louisville MSA would add significantly to the available construction workforce in the area.

Most of the construction workforce is expected to live close enough to the Brownsboro Site to easily commute from their current residence. For those who live in areas of the Louisville MSA that are further away than desired for reasonable commuting times, the housing occupancy rate within the Louisville Metro area (see Table 3.10-3) indicates there is available housing should such workers decide to relocate closer to the project site. The short-term impact to housing would be a minor beneficial impact to the local economy.

Using an input-output model with IMPLAN Sector 52-Construction of New Health Care Facilities, beneficial economic impacts within the Louisville MSA over the four-year construction period would be as shown in Table 4.10-1.

Table 4.10-1. Alternative A, Construction Phase Economic Impacts Within Louisville MSA.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Economic Output</th>
<th>Value Added</th>
<th>Employment</th>
<th>Labor Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>$661 million</td>
<td>$241 million</td>
<td>3,324 workers</td>
<td>$211 million</td>
</tr>
<tr>
<td>Indirect</td>
<td>$236 million</td>
<td>$127 million</td>
<td>1,549 workers</td>
<td>$80 million</td>
</tr>
<tr>
<td>Induced</td>
<td>$249 million</td>
<td>$145 million</td>
<td>1,916 workers</td>
<td>$87 million</td>
</tr>
<tr>
<td>Total</td>
<td>$1,146 billion</td>
<td>$513 million</td>
<td>6,789 workers</td>
<td>$378 million</td>
</tr>
</tbody>
</table>

Note: All values are expressed in 2020 dollars.

Construction-related expenditures would have the greatest estimated positive economic output and impacts on the following 10 industries (listed by IMPLAN® sector) within the Louisville MSA: (1) construction of new health care structures; (2) wholesale trade; (3) owner-occupied dwellings; (4) real estate; (5) truck transportation; (6) hospitals; (7) insurance carriers; (8) architectural, engineering, and related services; (9) wired telecommunications carriers; and (10) monetary authorities and depository credit intermediation.

Construction-related expenditures would have the greatest estimated positive employment impacts on the following 10 industries (listed by IMPLAN® sector) within the Louisville MSA: (1) construction of new health care structures; (2) wholesale trade; (3) employment services; (4) real estate; (5) full-service restaurants; (6) truck transportation; (7) hospitals; (8) limited service restaurants; (9) architectural, engineering, and related services; and (10) retail, general merchandise stores.

Construction-related expenditures would have short-term beneficial economic impacts within the Louisville MSA by creating jobs, generating income, and having beneficial impacts in terms of economic output, value-added, employment, and labor income over the four-year construction period.

4.10.3.2 Operation

The replacement VAMC would become operational in 2023. This facility would employ essentially the same number of employees as employed by the existing Robley Rex VAMC on Zorn Avenue and the eight community-based outpatient clinics (CBOCs) that are located in the Louisville Metro area. The number of fiscal year (FY) 2015 full-time employee equivalents (FTEEs) was 1,763. The annual payroll for the workforce at the VAMC and CBOCs is approximately $184.2 million, including benefits (VA
The existing VAMCs and CBOCs are expected to increase the number of FTEEs to a total of 2,106 by 2022 based upon projected VA service demand, not because of the proposed replacement VAMC. Co-location of the VBA regional office would include an additional 400 FTEEs to the VAMC medical campus.

The FY 2016 operational budget for the existing VAMCs and CBOCs is approximately $338.2 million. The operational budget is expected to increase by $5.5 million per year (above the FY 2016 operational budget) for the foreseeable future regardless of the proposed VAMC replacement project. For analysis purposes, the annual operational budget would be approximately $376.6 million by the opening of the replacement VAMC in 2023 (taking the $5.5 million per year annual increase into account, above the FY 2016 budget). Using an input-output model with IMPLAN Sector 482-Hospitals, the beneficial economic effects that the operation of the consolidated VAMC facility would have within the Louisville MSA operation phase beginning in 2023 would be as shown in Table 4.10-2. However, it is noteworthy that these beneficial operational economic effects that begin in 2023 (although substantial) are not beyond those that would occur with the continued operation of the existing Robley Rex VAMC under Alternative C (No Action).

<table>
<thead>
<tr>
<th>Impact</th>
<th>Economic Output</th>
<th>Value Added</th>
<th>Employment</th>
<th>Labor Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>$377 million</td>
<td>$204 million</td>
<td>2,188 workers</td>
<td>$188 million</td>
</tr>
<tr>
<td>Indirect</td>
<td>$133 million</td>
<td>$73 million</td>
<td>784 workers</td>
<td>$51 million</td>
</tr>
<tr>
<td>Induced</td>
<td>$207 million</td>
<td>$119 million</td>
<td>1,200 workers</td>
<td>$71 million</td>
</tr>
<tr>
<td>Total</td>
<td>$717 million</td>
<td>$396 million</td>
<td>4,172 workers</td>
<td>$311 million</td>
</tr>
</tbody>
</table>

Note: All values are expressed in 2023 dollars.

Operation-related expenditures would have the greatest estimated positive economic output and impacts on the following 10 industries (listed by IMPLAN® sector) within the Louisville MSA: (1) hospitals; (2) insurance carriers; (3) owner-occupied dwellings; (4) real estate; (5) wholesale trade; (6) employment services; (7) management and consulting services; (8) offices of physicians; (9) full-service restaurants; and (10) electric power transmission and distribution.

Operation-related expenditures would have the greatest estimated positive employment impacts on the following 10 industries (listed by IMPLAN® sector) within the Louisville MSA: (1) hospitals; (2) employment services; (3) full-service restaurants; (4) real estate; (5) insurance carriers; (6) limited-service restaurants; (7) wholesale trade; (8) management consulting services; (9) dry cleaning and laundry services; and (10) retail, general merchandise stores.

VA cannot predict the fluctuation of surrounding property values over time but seeks to avoid adversely impacting property values in the surrounding area by being a good neighbor. For example, VA properties are typically landscaped, designed to be aesthetically and/or architecturally appealing and to provide serene healing environments. They are well maintained (including street plowing in winter months), and are monitored and patrolled by a full time security/police force. VA’s proposed construction of a new substation to provide a redundant feed to the VAMC would have the added benefit of increasing capacity and reliability in the surrounding area. Property values in the surrounding areas are expected to remain largely unaffected by the operation of the VAMC at the Brownsboro Site. Generally speaking, hospitals are a type of land use that typically either helps maintain existing property values or can often provide a slight boost to surrounding property values because of demand for ancillary services (Alderman 2015) and long-term, stable employment opportunities that create a demand for housing (Dawtrey 2012).

However, VA acknowledges that it is also possible for some property values to decrease, particularly within the residential communities in the immediate vicinity of the VAMC, such as Crossgate, which had
a median home value of $250,000 in 2015. Crossgateis located where the change in visual character
would be most pronounced and the potential impacts on noise, traffic and air quality would be most
evident. There is the potential for the new facility to help reduce the nearby highway / interstate noise, for
some residents, however; and a hospital setting tends to be much quieter in the evening hours compared to
a mixed use development which was considered for the property in 2006.

The incidence of crime in the area is expected to be unaffected as a result of the operation of the VAMC.
Areas with high rates of crime and deviant behavior tend to be densely populated, physically deteriorated
places, with a substantial number of transients (National Institute of Justice 2009). The VAMC would not
change the demographics or decrease the economic characteristics of the area. The VA would provide 24-
hour security for onsite operations, which is expected to have a beneficial effect with regard to
discouraging crime onsite and possibly in adjacent areas.

As detailed above, operation phase expenditures would result in long-term beneficial economic impacts
within the Louisville MSA beginning in 2023. These beneficial effects include job creation, income
generation, and beneficial impacts in terms of economic output, value-added, employment, and labor
income for the life of the project beginning in 2023. Although these beneficial economic effects are
substantial, they are not any greater than those effects associated with Alternative C (No Action).

4.10.4 Alternative B: St. Joseph Site

4.10.4.1 Construction

Impacts from construction of a replacement VAMC at the St. Joseph Site would be nearly identical to
those described for Alternative A. There could be minor differences for some construction costs such as
utilities, but the overall project construction estimate would be the same at $925 million. The construction
schedule, construction-phase expenditures, number of construction workers and average annual wages
would be the same as Alternative A. Alternative B would have short-term beneficial economic impacts
within the Louisville MSA by creating jobs, generating income, and causing beneficial impacts in terms
of economic output, value-added, employment, and labor income over the four-year construction period
similar as Alternative A.

4.10.4.2 Operation

Impacts from operation of a replacement VAMC at the St. Joseph Site would be nearly identical as
described for Alternative A. The replacement facility would employ the same number of workers and
annual projected payroll would be the same as Alternative A. The total operational budget during
operations (at 2023 opening as well as projected budget) would be the same as Alternative A. The
beneficial economic impacts (economic output, value added, employment, and labor income impacts)
within the Louisville MSA would be the same as describe for Alternative A and, similarly, are not beyond
those that would occur with Alternative C (No Action).

Impacts to surrounding property values and incidences of crime would be similar to the impacts described
for Alternative A. Property values of homes near the St. Joseph site vary significantly, from a low of
$132,900 to a high of over $600,000. Property values of homes closest to the site could be adversely
affected, similar to Alternative A, however, no communities live in as close proximity to the site as at the
Brownsboro site; and the larger land parcel at St. Joseph provides a greater buffer between the VAMC
campus and the closest residence.
4.10.5 Alternative C: No Action

Under Alternative C, there would be no construction of new facilities or expansion of existing facilities. There would be no short-term expenditures on construction and no creation of construction phase jobs. There would be no short-term construction phase beneficial economic impacts within the Louisville MSA in terms of economic output, value added, employment, or labor income as would be the case with Alternative A or B.

The number of workers employed at the Zorn Avenue VAMC and eight CBOC facilities in the Louisville catchment area for FY 2015 is 1,763 FTEEs. The FY 2016 annual payroll for this workforce is approximately $184.2 million (including benefit costs). The FY 2016 operational budget for the existing VAMCs and CBOCs is estimated at $338.2 million. Under this alternative, continued operation of the existing VAMC and CBOCs would increase the number of FTEEs to a total of 2,106 by 2022 based upon projected VA service demand. The operational budget is expected to increase by $5.5 million per year for the foreseeable future (above 2016 operational budget).

In 2023 (the same operational year for Alternative A or B), the annual operational budget would be approximately $334 million (taking the $1.8 million per year annual increase into account, above the FY 2015 budget). Using an input-output model with IMPLAN Sector 482-Hospitals during the operational phase, the beneficial economic effects of continued operation of the VAMC and eight CBOCs within the Louisville MSA would be the same as the operational impacts described for Alternative A. The No Action alternative would continue to have long-term beneficial economic impacts within the Louisville MSA by creating jobs, generating income, and continue beneficial impacts in terms of economic output, value-added, employment, and labor income, the same as for Alternative A or B.

There would be no expected change to surrounding property values or incidences of crime due to the continued operation of the VAMC on Zorn Avenue.
4.11 Community Services

4.11.1 Evaluation Criteria

The evaluation of impacts on community services focused on the availability of and demand for health care (hospitals and clinics), emergency response (fire, rescue, medical), law enforcement (public safety), public schools, and consumer amenities (hotels and restaurants). The evaluation involved a qualitative analysis of the operational capacity of providing such services. An adverse effect on community services due to the proposed construction and operation of a new VAMC can be identified by these conditions:

- Change in the number of users of community services that exceed existing capacity
- Change in the demand for emergency response and public safety services that would increase response times based on existing personnel resources and equipment
- Change in the funding needed to sustain services or to increase access to services

The demand for and use of community services is based on the population served; therefore, changes in demand and use depend on changes in that population. The magnitude of impacts on community services can be assessed by changes in employment that would noticeably affect the community. A change in wages (gain or loss) associated with a change in employment could affect local revenue used to support public services that benefit the community.

4.11.2 Alternative A: Brownsboro Site

4.11.2.1 Construction

Construction of a new VAMC campus at the Brownsboro Site could have short-term needs related to emergency response and public safety services. Construction sites can be sources of accidents involving workers, equipment, and materials; attract theft and vandalism; and create safety hazards for persons not authorized to enter the site. Such incidents would have the potential to increase the number of calls for responses by emergency medical providers, fire departments, or police departments. General contractors minimize the occurrence of these types of incidents by properly maintaining construction equipment and implementing “good housekeeping” procedures to prevent fire ignition, educating construction workers in Occupational Safety and Health Administration-required safety standards, and securing and monitoring the construction site. In addition, the general contractor would be required to follow the occupational health and safety, accident prevention, fire safety, and site security policies of the federal agency overseeing construction. With adherence to these procedures to manage onsite risks, any increase in requests for emergency response by medical, fire, or police would not likely exceed the response capacity of these providers.

If Louisville Metro Emergency Medical Service (EMS) or Lyndon Fire is called to the site for a construction-related accident, fire, or rescue, both departments have cost recovery policies whereby their services would be reimbursed. Louisville Metro EMS bills the patient for medical treatment and transport. Lyndon Fire bills the party responsible for service responses to a motor vehicle accident, large structural fire, hazardous materials incident, or special technical rescue. Because of cost recovery policies, construction of the new VAMC would have a negligible effect on the budgetary capacity of these providers.

Construction activities that temporarily close or restrict travel lanes or designate a detour, along with slow-moving construction traffic, could potentially affect emergency vehicle (medical, fire, and police) response times. Access to buildings adjacent to the construction site would be maintained for fire trucks.
and emergency vehicles; however, construction vehicles and haul trucks near the site could reduce traffic flows and delay emergency vehicles traveling through the area. Traffic control plans would be prepared and shared with emergency response providers, as required by the Louisville Metro Public Works Engineering Division.

The yearly average of 830 construction workers would likely be from the Louisville Metro area (see Section 4.10.3.1). Research shows that construction workers will commute as much as two hours one way from their residence rather than relocate (EPRI 1982). Therefore, construction of the new VAMC at the Brownsboro Site would not likely cause an increase in student enrollment high enough to affect program capacity in the nearby schools.

The food and drink establishments within walking distance of the site and within convenient driving distance could experience an increase in demand for services from construction workers. This could have a beneficial economic effect on these local consumer amenities.

4.11.2.2 Operation

The operation of a new VAMC at the Brownsboro Site would not directly increase the number of VA employees. VA is expected to increase the number of full-time equivalent employees (FTEEs) from 1,763 (FY 2015) to 2,106 by FY 2022. This increase of 343 FTEEs is based upon projected demand for health care services and not because of the proposed replacement VAMC. This slight increase in VA employees over six to seven years would be immeasurable compared to estimated population growth of the Louisville metropolitan area. There would be no increase in demand for health care, emergency response, or public safety services that would exceed the capacity of the service providers for the area encompassing the Brownsboro Site.

The new VAMC buildings would have state-of-the-art fire prevention and protection equipment, such as detection and sprinkler systems. Routine monitoring and maintenance of equipment by VA staff and supplier contracts would continue to prevent the inadvertent tripping of alarms. It is anticipated that the current rate of two to three fire service responses per year (see Section 3.11.2.3) would not increase and could decrease due to newer facilities and equipment. While this would have only a minor effect on Lyndon Fire, in terms of the number of annual responses, it would require additional planning and training to respond to emergencies in a significantly larger structure than they’ve trained for in the past. Response by Lyndon Fire to the new VAMC for a structural fire, hazardous material incident, or technical rescue would be a cost recoverable service according to Lyndon Fire’s operational policies, and would not have an adverse effect on their budget capacity to provide these services. However, as the proposed replacement Louisville VAMC would be a federal facility constructed on federal property, all acknowledge that no property tax revenue would be generated by the Hospital to support the fire department. Based on recent discussions with the Lyndon Fire Protection District, they would be interested in any opportunity to receive compensation for services in the future; but do not oppose the construction of the facility at the Brownsboro Rd site. The Lyndon Fire Protection District is committed to partnering with the Project Delivery Team to provide comments during design to ensure that the facility would be constructed to be compatible with local firefighting practices; and with the Louisville Metro's Suburban Services ability to respond effectively during an emergency. Current staffing levels are above previous years and the Fire District is part of Metro Louisville's Suburban Fire Services which participate in a mutual aid agreement/process. In any incident necessitating response, Louisville Metro Safe Emergency Communication Center would be the central receiving point for emergency service requests for fire, hazardous substance, medical, injury, and rescue intervention from the public and other agencies within the suburban services area. Dispatchers prioritize incidents for response based on severity and life-hazard; and would dispatch the closest service with the best applicable equipment (and availability) to respond to the incident. This process, along with the experience and professionalism of
Lyndon Fire Protection District and the other Fire Protection Districts that make up the Suburban Services, ensure that the new VAMC, its patients, staff and visitors would receive timely services and be protected against loss of life and property damage.

The increase in traffic in the vicinity of the new VAMC could result in an increase in vehicle accidents, to which Lyndon Fire would respond. Response to a vehicle accident would be a cost recoverable service according to Lyndon Fire’s operational policies, and would not have an adverse effect on their budget capacity to provide this service.

VA would update the support agreement with the Louisville Metro Police Department to reflect the new location of the VAMC and to address any changes to VA police and security unit operations at the new campus.

Some VA employees, particularly existing renters, could choose to relocate nearer to the Brownsboro Site. Should these VA employees have school-aged children, there could be an increase in enrollment in the nearby schools. Enrollment at the two elementary schools (Dunn and Wilder), middle school (Kammerer), and high school (Ballard) nearest the Brownsboro Site is below program capacity at each school (see Section 3.11.2.1); therefore, any increase in student enrollment due to VA employees could likely be accommodated without any adverse effects.

The economic effect of operating the VAMC at the Brownsboro Site (see Table 4.10-2), which includes employee wages, would be the same as the continued operation at the existing Zorn Avenue location (No Action Alternative). There would be no change in revenue from VA operations at the Brownsboro Site that would adversely affect funding of community services.

The food and drink establishments within walking distance of the site and within convenient driving distance could experience an increase in demand for services from VA employees and volunteers, Veterans, Veterans’ families, and visitors. Hotels near the new VAMC could also experience a new clientele from Veterans, Veterans’ families, and visitors not local to the area. The operation of a new VAMC could have a beneficial economic effect on these local consumer amenities.

4.11.3 Alternative B: St. Joseph Site

4.11.3.1 Construction

Impacts from construction at the St. Joseph Site would be similar to the impacts described for the Brownsboro Site. Middletown Fire has a cost recovery policy for hazardous material incident response (Riddle 2016). However, if Middletown Fire is called to the site for a construction-related accident, fire, or rescue, the operational budget capacity of the fire department to provide such services could be adversely affected.

4.11.3.2 Operation

Impacts to health care, emergency response, public safety services, and consumer amenities from operation of a new VAMC at the St. Joseph Site would be similar to the impacts described for the Brownsboro Site. Because Middletown Fire does not have cost recovery policies for responding to fire alarms, structural fires, or technical rescues, providing such services for a new VAMC could adversely affect the operational budget capacity of the fire department to provide these services to tax exempt entities, such as the VA. It is anticipated that the current rate of two to three fire service responses per year to the VAMC (see Section 3.11.2.3) would not increase and could decrease due to newer facilities and fire prevention and protection equipment, which would likely have a minor effect on the Middletown
Fire Protection District. Middletown Fire has entered into “payment in lieu of taxes” contracts with tax exempt entities to recover the cost of providing them with fire response services (Riddle 2016).

VA employees with school-aged children could choose to relocate nearer to the St. Joseph Site. Enrollment at the elementary (Stopher), middle (Crosby), and high (Eastern) schools nearest the site is below program capacity (see Section 3.11.2.2); therefore, each school could likely accommodate additional students without any adverse effects.

4.11.4 Alternative C: No Action

4.11.4.1 Construction

No construction is planned for the existing VAMC at the Zorn Avenue location; therefore, no construction-related impacts to community services would occur. If the new VAMC is not constructed at either the Brownsboro Site or St. Joseph Site, future development of those sites by others could have similar construction-related impacts to community services as described for Alternatives A and B.

4.11.4.2 Operation

Veterans health care services would continue at the existing Robley Rex VAMC; therefore, no operation-related impacts to community services in the area would occur. The economic effect of continued operations of the existing VAMC (see Table 4.10-2), which includes employee wages, would continue to have the same effect on funding of community services.

Future development of the Brownsboro Site or St. Joseph Site by others could have similar operation-related impacts to community services as described for Alternatives A and B.
4.12 Solid Waste and Hazardous Materials

4.12.1 Evaluation Criteria

The potential effects related to solid waste generation and disposal were evaluated through a comparison of current and projected solid waste generation rates and the permitted capacity and intake rate for the solid waste landfill serving the project area. The evaluation resulted in a determination as to whether existing solid waste disposal facilities could accommodate the projected solid waste generation rates for each alternative.

Hazardous materials that could be transported, used, encountered, or disposed in the construction and operation of each alternative were evaluated to predict the potential effects to human health and the environment. Additionally, the potential for legacy hazardous material contamination at project sites was considered.

An alternative would be considered to result in an adverse impact related to solid waste and hazardous materials if it would:

- result in the exposure of the public or the environment to harmful levels of hazardous materials
- exceed the permitted capacity or intake rate for the solid waste landfill serving the project area
- result in noncompliance with applicable federal and state regulations or VA management practices

4.12.2 Alternative A: Brownsboro Site

4.12.2.1 Construction

A short-term increase in waste generation resulting from construction activities is anticipated. Wastes generated by construction activities would be transferred to the Outer Loop Recycling & Disposal Facility, which has adequate capacity to receive additional solid waste.

The Brownsboro Site is currently an unimproved vacant lot; no recognized environmental conditions have been identified. Should environmental contamination be encountered during construction activities, all waste would be abated and managed in accordance with regulations and disposed in appropriate disposal facilities.

As there are no existing facilities on the site, no significant hazardous waste removal is anticipated as part of construction, with the exception of minor quantities of construction waste generated as part of construction or associated with maintenance of construction equipment (for example, oils or lubricants), which while requiring compliance with environmental laws regarding proper disposal, would not typically require special public notice.

Staging and operation of construction equipment carries an increased potential for incidental releases of vehicle fluids (such as oil, diesel fuel, gasoline, and antifreeze). Proper vehicle maintenance and inspection would reduce this potential, and adverse impacts are not expected. All waste characterized as hazardous would be containerized at the point of generation and would not be subject to stormwater runoff.

In the event that a new underground storage tank and/or piping is installed as part of facility construction, Kentucky Department for Environmental Protection must be notified. A permit is also required to install
aboveground storage tanks for petroleum products or hazardous substances. The Department must also be notified if asbestos, lead paint, and/or other contaminants are encountered during this project.

A “construction entrance” at Brownsboro Road would be designated as the primary entrance for all deliveries; it would also be used as the primary egress point for all vehicles transporting solid and hazardous waste off site. After exiting the site to the north, the waste shipments would likely immediately access the interstate for delivery to the ultimate disposal/transfer location.

Carlimar Lane, a small residential street at the south side of the property, would not be used as a point of entry or egress during construction except in the event of an unexpected disruption of the Brownsboro entrance. Given the close proximity of local residents to the proposed site (and the Crossgate Community in particular), VA would require its construction contractor to assist residents and city officials with proper directing of traffic through the use of appropriate temporary signage, and onsite construction supervisors who would provide instruction and pre-job briefings to employees and drivers.

Construction-related adverse impacts from solid waste and hazardous materials are not expected to occur. Short-term increases in solid waste generation are predicted, but would have a negligible effect on remaining landfill capacities. Waste minimization opportunities are described in Chapter 5.

4.12.2.2 Operation

Quantities of solid waste, medical waste, and hazardous waste generated from operation of a new VAMC at the Brownsboro Site would be similar to those generated at the existing Zorn Avenue VAMC, with anticipated increases resulting from projected increases in patients served. Hazardous waste would be removed by truck on a schedule based on amount generated similar to current operations. Trucks would use the main Brownsboro entrance except in the event of an unexpected disruption to that entrance, in which case scheduled removals may be rescheduled if there is sufficient advance notice, or directed to the Carlimar Lane gate in the event of an emergency. As described in section 2.2.2.2, the Carlimar Lane gate would be locked and accessible only when emergency vehicles could not access the main entrance on Brownsboro Road (such as in the case of traffic accident or other road blockage). The Louisville VAMC is currently an insignificant contributor to the volume handled by waste disposal facilities, and anticipated increases in waste generation would also be insignificant. Attempts to meet VA waste diversion goals could reduce quantities destined for disposal. Adverse impacts to the available capacity of waste disposal facilities are not expected.

Relocating facility operations to the Brownsboro Site would necessitate revisions to the Louisville VAMC RCRA permit or a new site-specific permit.

4.12.3 Alternative B: St. Joseph Site

4.12.3.1 Construction

A short-term increase in waste generation resulting from construction activities is anticipated. Wastes generated by construction activities would be transferred to the Outer Loop Recycling & Disposal Facility, which has adequate capacity to receive additional solid waste.

The St. Joseph Site is currently an unimproved agricultural lot; no recognized environmental conditions have been identified. Should environmental contamination be encountered during construction activities, all waste would be abated and managed in accordance with regulations and disposed in appropriate disposal facilities.
As there are no existing facilities on the site, no significant hazardous waste removal is anticipated as part of construction, with the exception of minor quantities of construction waste generated as part of construction or associated with maintenance of construction equipment (for example, oils or lubricants), which while requiring compliance with environmental laws regarding proper disposal, would not typically require special public notice.

Staging and operation of construction equipment carries an increased potential for incidental releases of vehicle fluids (such as oil, diesel fuel, gasoline, and antifreeze). Proper vehicle maintenance and inspection would reduce this potential, and adverse impacts are not expected.

In the event that a new underground storage tank and/or piping is installed as part of facility construction, Kentucky Department for Environmental Protection must be notified. A permit is also required to install aboveground storage tanks for petroleum products or hazardous substances. The Department must also be notified if asbestos, lead paint, and/or other contaminants are encountered during this project.

A “construction entrance” at Factory Lane would be designated as the primary entrance for all deliveries; it would also be used as the primary egress point for all vehicles transporting solid and hazardous waste off site. After exiting the site, waste shipments could go either west or east/south from a Factory Road entrance to access the interstate.

Secondary and/or emergency access drive(s) located at Bush Farm Road (eastern boundary) and/or Terra Crossing Boulevard (southern boundary) would be used only if there was an unexpected blockage on Factory Lane (such as in the case of a traffic accident or other road blockage).

Similar to the Brownsboro location, VA would further assist nearby residents and city officials with proper directing of traffic through the use of appropriate temporary signage and onsite supervisors who would provide instruction and pre-job briefings to employees and drivers.

Construction-related adverse impacts from solid waste and hazardous materials are not expected to occur. Short-term increases in solid waste generation are predicted, but would have a negligible effect on remaining landfill capacities. Waste minimization opportunities are described in Chapter 5.

4.12.3.2 Operation

Quantities of solid waste, medical waste, and hazardous waste generated from operation of a new facility at the St. Joseph Site would be similar to those generated at the existing Zorn Avenue facility, with anticipated increases resulting from projected increases in patients served. The Louisville VAMC is currently an insignificant contributor to the volume handled by waste disposal facilities, and anticipated increases in waste generation would also be insignificant. Attempts to meet VA waste diversion goals could reduce quantities destined for disposal. Adverse impacts to the available capacity of waste disposal facilities are not expected.

Relocating facility operations to the St. Joseph Site would necessitate revisions to the Louisville VAMC RCRA permit or a new site-specific permit.

4.12.4 Alternative C: No Action

4.12.4.1 Construction

Under Alternative C, construction activities would not occur; therefore, construction-related adverse impacts from solid waste and hazardous materials would not result.
4.12.4.2 Operation

Quantities of solid waste, medical waste, and hazardous waste generated from continued operation of the existing Zorn Avenue facility would be similar to those presently generated, with potential increases resulting from increases in patients served. The Louisville VAMC is currently an insignificant contributor to the volume handled at waste disposal facilities, and anticipated increases in waste generation would also be insignificant. Attempts to meet VA waste diversion goals could reduce quantities destined for disposal. Adverse impacts to the available capacity of waste disposal facilities are not expected.
4.13 Transportation and Traffic

4.13.1 Evaluation Approach and Criteria

Each alternative was evaluated based on the impact to the public for vehicles coming to or leaving the site from the interstate highway system. For each path between the facility and the interstate system, the signalized intersections were evaluated based on both level of service (LOS) and the travel time for specific routes to and from the interstate. All evaluations are done for both the AM and PM peak hour periods in the design year of 2025.

The LOS is a qualitative assessment of a road network’s operating conditions, generally in terms of traffic speed, travel time or delays, congestion or maneuverability, interruptions, and convenience. An LOS of A through C represents desirable (acceptable) conditions and D represents tolerable conditions. Congestion and delays increase under LOS-E to a level that is considered at capacity, whereas LOS-F ranks as the least functional level of traffic movement and is considered serious congestion. LOS-D is often considered an acceptable level of service for urban roadways like US 42, and LOS-D can also be considered acceptable when the cost to improve operations to LOS-C is prohibitive.

Impacts on transportation and parking infrastructure are evaluated for the potential to disrupt or improve existing levels of service and transportation patterns and circulation. For purposes of this evaluation, an impact would be adverse if degradation of an LOS to unacceptable conditions can be attributed solely to the alternative, or the alternative increases average daily traffic (ADT), measured in vehicles per day, by at least 20 percent on access roads to the project site (38 CFR 26.6(a)(2)).

4.13.2 Alternative A: Brownsboro Site

4.13.2.1 Construction

The daily commute of construction workers and deliveries of construction materials to the site would add vehicle trips to the area. The size of the workforce would vary throughout the construction schedule based on the types of construction activities; up to 1,500 workers could be commuting to the project site on a given day during the most active construction period. Temporary increases in vehicle trips would vary by location based on the travel routes of construction workers and delivery vehicles. It is likely that most construction-related vehicle trips would affect the Watterson Expressway (I-264) ramp split to Old Brownsboro Road and the I-264-US 42 interchange. Based on the anticipated sequence of construction activities and the size of the construction staging areas, parking on the project site would not accommodate all workers’ personal vehicles during the most active construction period. Throughout much of construction, site constraints will require the construction contractor and their workforce to utilize carpooling, public transportation, and/or offsite parking and shuttling. Construction bid documents will include the requirement for offerors to submit plans to demonstrate acceptable site use, which would include addressing contractor parking (including potential sites for offsite contractor parking and storage) and steps the contractor will take to minimize adverse impact to local traffic. VA anticipates this approved plan may also mitigate traffic impact to the extent that it reduces the number of construction worker vehicles commuting to the site.

The VA Traffic Impact Study (Palmer Engineering 2016; see Appendix B) estimates that approximately 10,000 ADT will be added to the roadways as a result of the VA moving to the Brownsboro Site (referred to as the Midlands site in Appendix B). Construction traffic is anticipated to be much lower with a maximum of 1500 workers making daily trips in and out as well as material deliveries. The use of offsite parking for some of these workers will reduce the daily increase in traffic volumes. Since analysis has been done for impacts from the addition of approximately 10,000 vehicles per day ADT, and since
construction traffic would end before the proposed VAMC becomes operational, the impact on traffic during construction would be less than the impact during operation.

4.13.2.2 Operation

The VA Traffic Impact Study (Appendix B) estimated that approximately 10,000 vehicles per day ADT would be added to area roadways during operations under Alternative A. Entrance to and exit from the site would be at the northeast corner at the existing intersection of Old Brownsboro Road and the ramp split (see Figure 4.13-1). Patients, visitors, staff, buses, and deliveries would use two entrance lanes and two exit lanes. Traffic circulation would be designed to largely eliminate the need for left turns, separate users of the campus facilities, and minimize traffic noise on adjacent residential neighborhoods. An additional right turn lane would split from the main entry drive for staff, maintenance, emergency, and delivery vehicles to access the service road along the west edge of the site, whereas patients, visitors, and buses would continue on the divided boulevard to access the parking structures and VBA and VAMC drop-off locations.

An emergency access road would be located at the southwest corner of the site at Carlimar Lane. This entry/exit would be gated and accessible primarily to emergency responders (ambulance, fire, and police) should both the entry and egress lanes at the main entrance on Old Brownsboro Road be temporarily inaccessible for some reason, such as an accident. In the event an accident blocks only the inbound or outbound lane at the main entry, but not both, VA Police could implement control measures to direct traffic to facilitate both ingress and egress of patient, staff, and visitor (including delivery) traffic. Under catastrophic circumstances, where both lanes of the main entry would be inaccessible for greater durations, at the discretion of the Medical Center Director or his authorized designee, the Carlimar Lane gate would be temporarily opened to patient, staff, and visitor (including delivery) vehicles to ensure continued operation of the VAMC during such an extended emergency.

The roads and traffic circulation on the project site would be designed to accommodate TARC bus routes and stops. VA would coordinate with TARC to encourage realignment of the current bus routes on Old Brownsboro Road to serve the campus, including potentially entering the campus for onsite stop(s). Updated transit information from the Mayor of Louisville (Fischer 2016) indicated the the current number of trips on the No.15 to the proposed Brownsboro location has been reduced to six morning trips and six afternoon trips, which would have an adverse impact on future VAMC and VBA employees and patients who rely on TARC for their transportation needs. VA also would continue to coordinate with TARC to support increased access if employee and patient demand warrants it.

Pedestrian and bicycle access to the VAMC campus would be located with the vehicle entrance and would be connected to existing sidewalks on Old Brownsboro Road. Pedestrian crossing signals, ramps, and pavement markings would be installed as part of the entrance/exit construction. Pedestrian access would not be provided to Carlimar Lane or Haverhill Road in the adjacent residential neighborhoods. Bicycle parking would be provided in the north parking deck.

Two parking decks would accommodate approximately 3,000 vehicles. The number of parking spaces was based on the number of employees (and overlapping shift changes), volunteers, outpatient visits, inpatient census, vendors, and visitors, and was planned to prevent offsite or street parking. The decks would be connected to the VAMC atrium and the central activity corridor at the ground level. A minimal number of surface parking spaces would be located on the west side of the campus for maintenance and delivery vehicles.
Operation of the proposed campus is anticipated to increase the ADT on Old Brownsboro Road, between the ramp split and US 42, by more than 20 percent. ADT is not expected to increase by more than 20 percent on any other segment of roadway in the corridor.

![Figure 4.13-1. Traffic Circulation on Proposed VAMC Campus.](image)

The 2016 VA Traffic Impact Study evaluated AM and PM traffic conditions for two 2025 design year scenarios including Alternative A: with the existing interchange intact and with the proposed single point urban interchange (SPUI) constructed. Additionally, due to the types of land use surrounding the site and
because the few unimproved tracts are already approved for development, it was determined that if the VA selected another site for their location, the Brownsboro Site would be expected to be developed for another use, by the U.S. government or a subsequent property owner. Therefore, in addition to the analysis of traffic conditions with the VAMC, the 2016 VA Traffic Impact Study also evaluated AM and PM traffic conditions for two 2025 design year scenarios including non-VA use: the existing interchange with mixed-use development traffic and the proposed SPUI with mixed-use development traffic.

The 2016 VA Traffic Impact Study modeled different measures of effectiveness of the proposed interchange improvement alternatives at Watterson Expressway (I-264) and US 42; two of the measures included LOS and intersection delay. Table 4.13-1 shows the intersection LOS and delay results for the design year of 2025 for the no build (no interchange improvements) conditions with both the VAMC traffic and the mixed-use development traffic and for the proposed SPUI conditions for both the VAMC traffic and the mixed-use development traffic. The LOS is projected to worsen and delays would increase from 2015 baseline conditions (refer to Table 3.13-1) by 2025 under the no build scenario with the operation of either the VAMC campus or a mixed-use development, along with projected population growth and increased rate of development. The LOS and delay with the anticipated SPUI (“build” scenario) would improve the overall ramps intersection in the case of VAMC traffic and mixed-use development traffic. For either the no build or build scenarios, for both the VAMC and mixed-use development, the intersection of US 42 at KY 22 would continue to experience highly congested traffic conditions.

The future adverse conditions under any scenario cannot be attributed solely to the operation of the VAMC campus based on the projected growth of the area at 0.8 to 1.0 percent annually. Although adverse, Alternative A would not significantly contribute to the degradation of the LOS at the intersection of US 42 at KY 22 when compared to design year (2025) conditions for a mixed-use development at the same site.

Table 4.13-1. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – Brownsboro Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>No Build + VAMC</th>
<th>No Build + Mixed-Use Development</th>
<th>Build + VAMC</th>
<th>Build + Mixed-Use Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (seconds)</td>
<td>LOS</td>
<td>Delay (seconds)</td>
</tr>
<tr>
<td>US 42 at Rudy Lane</td>
<td>C / D</td>
<td>29 / 49</td>
<td>C / D</td>
<td>28 / 49</td>
</tr>
<tr>
<td>US 42 at I-264 southbound ramp</td>
<td>E / D</td>
<td>61 / 51</td>
<td>E / D</td>
<td>64 / 54</td>
</tr>
<tr>
<td>US 42 at I-264 northbound ramp</td>
<td>C / C</td>
<td>34 / 32</td>
<td>C / C</td>
<td>35 / 32</td>
</tr>
<tr>
<td>US 42 at KY 22 / Northfield Drive</td>
<td>F / F</td>
<td>126 / 152</td>
<td>F / F</td>
<td>139 / 125</td>
</tr>
<tr>
<td>KY 22 at ramp split</td>
<td>D / F</td>
<td>43 / 128</td>
<td>D / F</td>
<td>47 / 92</td>
</tr>
</tbody>
</table>

Note: “Build” and “No Build” indicate whether or not the Watterson Expressway (I-264) and US 42 interchange is improved or not.

The peak hour LOS at an intersection is based in part on the “turning movements” or number of vehicles in the available travel lanes (right turn, left turn, and through lanes) at the intersection. Figure 4.13-2 shows the morning and evening peak hour turning movements for baseline (2015) and future (2025) conditions. The peak hour LOS at an intersection is based in part on the “turning movements” or number of vehicles in the available travel lanes (right turn, left turn, and through lanes) at the intersection. Figure 4.13-2 shows the morning and evening peak hour turning movements for baseline (2015) and future (2025) conditions.

1 Mixed-use development traffic was based on information available in a 2006 Traffic Impact Study for the Midlands, and includes multi-family residential, condos/townhomes, a hotel, office space, high-turnover (sit down) restaurants, and retail space. Internal circulation and pass-by trips were accounted for in anticipated traffic generated by the mixed-use development.
conditions for the intersections of US 42 at KY 22, and KY 22 at the I-264 ramp split, the two nearest intersections that would serve the Brownsboro Site. The morning and evening peak hour vehicle trips projected to be generated by the proposed VAMC campus, and the directional distribution of these trips, were part of the traffic analysis (Appendix B). The trip distribution is consistent with that used in the KYTC forecast (KYTC 2016). This forecast was adjusted to reflect conditions under Alternative A, using methodology consistent with KYTC’s forecast.

Figure 4.13-2. Brownsboro Site: Future Signalized Intersection Movements for Baseline (2015) and Future (2025) Years.
The data in Figure 4.13-2 show the volume of each turning movement entering and exiting the proposed VAMC campus as compared to the overall intersection movements. During the morning peak hour, vehicles entering (244) and exiting (122) the VAMC campus in the direction of the US 42 at KY 22 intersection amount to approximately 9 percent of the total turning movements (4,356) at that intersection. During the evening peak hour, vehicles entering (65) and exiting (497) the VAMC campus in the direction of the US 42 at KY 22 intersection would be approximately 13 percent of the total turning movements (4,432). The Brownsboro Site would therefore contribute some impacts to the increase in delay at that intersection.

The proposed VAMC campus would obviously be the source of a greater number of turning movements and higher percentage of total movements at the KY 22 and I-264 ramp split intersection because this intersection would be the direct entrance and exit to and from the campus. At approximately one-third of the total turning movements at the intersection during the morning (36 percent) and evening (36 percent) peak hours, the Brownsboro Site would have a notable contribution to the intersection delay. However, the KY 22 and I-264 ramp split intersection still has an acceptable LOS of C/C in both the 2015 baseline morning/evening peak hours and would remain C/C for the 2025 build scenario in the morning/evening peak hours. The LOS would drop to D/F in the 2025 No Build scenario in the morning/evening peak hours. The KY 22 and I-264 ramp split intersection is also not anticipated to have a difference in LOS whether the VA is constructed or a different mixed-use development is constructed using that intersection for access.

In addition to measuring LOS and delay, the 2016 VA Traffic Impact Study also measured travel time data for select routes along the corridor. The No Build + VAMC and No Build + Mixed-Use Development scenarios had travel times that were higher than the 2015 baseline conditions for both the morning and evening peaks. The travel times along the corridor (not those directly to and from the Brownsboro Site) are comparable for No Build + VAMC conditions and No Build + Mixed-Use Development conditions.

In general, the no build (existing unimproved interchange) travel times with the VAMC traffic are slightly less to and from the Brownsboro Site than the associated routes for the no build scenario with a mixed-use development. However, with the exception of a few routes, the travel times between the two scenarios are very comparable.

The travel times for the proposed SPUI (both with the VA and with the Mixed Use development) would vary—improve for some routes, worsen at others, or remain comparable to baseline conditions. The travel times along the corridor (not those directly to and from the VA site) are very comparable between the build conditions with the VA and the build conditions with the Mixed Use development.

In general, the AM travel times for the build (SPUI) with the VA traffic and the build with the Mixed Use development traffic are consistent. The PM travel times are about even, with half of the travel times being shorter for the VA build conditions and half of the travel times being shorter for the Mixed Use development conditions. As with the no build conditions (existing interchange), the travel times between the build conditions (with the VA and with the Mixed Use development) are very comparable.

The travel times for the planned SPUI (with the VAMC traffic or with the mixed-use development traffic) are shorter for the AM peak period. Travel times for the SPUI are about even in the PM peak hour, with half of the travel times being shorter than the no build conditions. The travel times that are longer in the PM peak are some of those directly to and from the proposed VAMC.

Overall travel time impacts are negligible between the no build / build conditions with the VAMC traffic, in comparison to those predicted for the mixed-use development traffic.
Table 4.13-2 shows the travel time results for the design year of 2025 for the no build (no interchange improvements) conditions with both the VAMC traffic and the mixed-use development traffic and for the conditions with the planned SPUI for both the VAMC and mixed-use development traffic.

Table 4.13-2. Future (2025) Travel Time Results – Brownsboro Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Travel Time (minutes)</th>
<th>No Build + VAMC</th>
<th>No Build + Mixed-Use Development</th>
<th>Build + VAMC</th>
<th>Build + Mixed-Use Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>I-264 eastbound to Lime Kiln Lane</td>
<td>3.4</td>
<td>5.9</td>
<td>3.4</td>
<td>6.4</td>
<td>2.8</td>
</tr>
<tr>
<td>I-264 westbound to Lime Kiln Lane</td>
<td>3.6</td>
<td>3.2</td>
<td>3.6</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>US 42 westbound to I-264 westbound</td>
<td>4.3</td>
<td>3.3</td>
<td>4.2</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>KY 22 to I-264 westbound</td>
<td>5.6</td>
<td>4.2</td>
<td>5.9</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>I-264 eastbound to VAMC</td>
<td>1.9</td>
<td>1.9</td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>I-264 westbound to VAMC</td>
<td>2.8</td>
<td>2.5</td>
<td>2.9</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>US 42 eastbound to VAMC</td>
<td>3.2</td>
<td>2.6</td>
<td>3.2</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>US 42 westbound to VAMC</td>
<td>3.1</td>
<td>2.9</td>
<td>3.4</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>KY 22 to VAMC</td>
<td>2.2</td>
<td>-</td>
<td>2.4</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>VAMC to I-264 westbound</td>
<td>6.6</td>
<td>4.0</td>
<td>8.0</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>VAMC to I-264 eastbound</td>
<td>4.7</td>
<td>2.7</td>
<td>6.2</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>VAMC to US 42 westbound</td>
<td>5.1</td>
<td>2.7</td>
<td>6.7</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>VAMC to US 42 eastbound</td>
<td>5.5</td>
<td>3.0</td>
<td>6.7</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>VAMC to KY 22</td>
<td>1.2</td>
<td>0.8</td>
<td>1.6</td>
<td>0.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Note: “Build” and “No Build” indicate whether or not the Watterson Expressway (I-264) and US 42 interchange is improved or not.

No Future Site Development (Greenfield Scenario)

Finally, while future development of the Brownsboro property appears to be likely - whether it be for the proposed VAMC or a Mixed Use Development as analyzed above - VA recognizes that any proposed development represents a significant change in traffic from current levels since the site is undeveloped. As noted above, operation of the proposed campus is anticipated to increase the ADT on Old Brownsboro Road, between the ramp split and US 42, by more than 20 percent which is considered a significant impact, although ADT is not expected to increase by more than 20 percent on any other segment of roadway in the corridor.

In order to provide a more equitable comparison of undeveloped site conditions between the action alternatives and also in response to comments, VA analyzed traffic impacts at the Brownsboro assuming no traffic would be added beyond background growth in the area out to 2025. This scenario is similar to what was assumed for the St. Joseph Site but the analysis was conducted on a qualitative basis that compared Design Hourly Volumes (DHV) instead of conducting detailed level of service or travel time analyses.

The undeveloped Brownsboro Site analysis assumed no traffic would be added beyond background growth in the area out to 2025. Comparisons of the DHVs in three locations show relative differences in traffic compared to the No Build+VAMC and No Build+Mixed Use Development scenarios. No difference in projected DHV would be expected whether the new SPUI interchange is constructed or not.
since the data represent the total number of cars on the roads and not associated delays. However, the overall traffic congestion/delays associated with the projected number of cars would be expected to be significantly reduced with construction of the new SPUI interchange.

The AM Peak traffic scenario with no VAMC and no development on the parcel would result in lower traffic volumes along all routes compared to a scenario in which the parcel is developed. The build and no build scenarios are closely related along US 42 between Old Brownsboro Road and Lime Kiln Lane due to this segment of roadway being primarily commuter traffic that is going into downtown Louisville area or accessing I-264. To the west of Old Brownsboro Road on US 42 the traffic volumes would be approximately 9 percent higher due to the additional trips generated by the VAMC that would have a destination at the subject parcel. The Old Brownsboro Road volumes, east of the site, would be approximately 15 percent higher with the VA. The segment of Old Brownsboro Road between US 42 and the proposed site entrance would have the biggest increase with the VA construction, 36 percent, because this would be the single access point.

The PM Peak traffic scenario is similar. There would be a 14 percent increase in traffic on US 42 to the west of Old Brownsboro Road when compared to the no VAMC, no Mixed-Use Development scenario. The Old Brownsboro Road volumes to the east of the site would be approximately 12 percent higher and the segment along Old Brownsboro Road between the proposed entrance and US 42 would have a 60 percent increase in traffic. Similar increases in 2025 DHV are expected for a Mixed-Use Development scenario when compared to the no VAMC and no Mixed-Use Development scenario.

Table 4.13-2A shows the 2025 DHV for the No VAMC, No Mixed-Use Development Scenario compared to the 2025 DHV’s for the VAMC and Mixed-Use Development scenarios along, with the percent increase for either Build scenario over the No-Build /No Development scenario.

Table 4.13-2A. Future (2025) Design Hourly Volumes – Brownsboro Site.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No Build/ No Development</th>
<th>No Build + VAMC</th>
<th>No Build + Mixed-Use Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DHV (Veh/ Hr)</td>
<td>DHV (Veh/ Hr)</td>
<td>% Increase</td>
</tr>
<tr>
<td>AM Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 42 (West of Old Brownsboro)</td>
<td>3935</td>
<td>4281</td>
<td>9%</td>
</tr>
<tr>
<td>Old Brownsboro Road (East of Site)</td>
<td>1420</td>
<td>1632</td>
<td>15%</td>
</tr>
<tr>
<td>Old Brownsboro Road (Between US 42 and Site)</td>
<td>1005</td>
<td>1371</td>
<td>36%</td>
</tr>
<tr>
<td>PM Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 42 (West of Old Brownsboro)</td>
<td>3765</td>
<td>4285</td>
<td>14%</td>
</tr>
<tr>
<td>Old Brownsboro Road (East of Site)</td>
<td>1365</td>
<td>1529</td>
<td>12%</td>
</tr>
<tr>
<td>Old Brownsboro Road (Between US 42 and Site)</td>
<td>905</td>
<td>1447</td>
<td>60%</td>
</tr>
</tbody>
</table>
4.13.3 Alternative B: St. Joseph Site

4.13.3.1 Construction

The daily commute of construction workers and deliveries of construction materials to the project site would add vehicle trips to the area. The size of the workforce would vary throughout the construction schedule based on the types of construction activities; up to 1,500 workers could be commuting to the project site on a given day during the most active construction period. Temporary increases in vehicle trips would vary by location based on the travel routes of construction workers and delivery vehicles. It is likely that most construction-related vehicle trips would affect the Gene Snyder Freeway (I-265)/Old Henry Road and the Gene Snyder Freeway/LaGrange Road interchanges.

The VA Traffic Impact Study (Palmer Engineering 2016; see Appendix B) estimates that approximately 10,000 ADT will be added to the roadways as a result of the VA moving to the St. Joseph Site. Construction traffic is anticipated to be much lower with a maximum of 1,500 workers making daily trips in and out as well as material deliveries. Since analysis has been done for impacts from the addition of approximately 10,000 vehicles per day ADT, and since construction traffic would end before the proposed VAMC becomes operational, the impact on traffic during construction would be less than the impact during operation. The start of construction under Alternative B would, however, create the possible need for the addition of a signalized intersection where one does not currently exist.

4.13.3.2 Operation

The VA Traffic Impact Study (Appendix B) estimates that approximately 10,000 vehicles per day ADT would be added to the area roadways as a result of the VA moving to the St. Joseph Site. Entrance to and exit from the St. Joseph Site would be along Factory Lane with traffic from I-265 split between the LaGrange and Old Henry Road exits.

VA would have to coordinate with TARC to try to extend existing bus routes to the project site to serve the proposed VAMC campus.

The proposed VAMC is anticipated to increase the ADT on Factory Lane, near both the LaGrange Road and Old Henry intersections, by more than 20 percent.

The 2016 VA Traffic Impact Study evaluated AM and PM traffic conditions for two 2025 design year scenarios: the no VAMC conditions (without VA traffic) and the VAMC conditions (with VA traffic).

The 2016 VA Traffic Impact Study modeled LOS and intersection delay for the study scenarios. Table 4.13-3 shows the intersection LOS and delay results for the design year of 2025 for the no build (without VA traffic) conditions and for the build (with VA traffic) conditions. For either scenario, the intersections of Old Henry Road at Bush Farm Road, LaGrange Road at Factory Lane, and LaGrange Road at I-265 southbound ramp would experience highly congested traffic conditions.
Table 4.13. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – St. Joseph Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>No VAMC AM Peak Hour</th>
<th>With VAMC AM Peak Hour</th>
<th>No VAMC PM Peak Hour</th>
<th>With VAMC PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (seconds)</td>
<td>LOS</td>
<td>Delay (seconds)</td>
</tr>
<tr>
<td>Old Henry Road at I-265 northbound ramp</td>
<td>D</td>
<td>49</td>
<td>C</td>
<td>34</td>
</tr>
<tr>
<td>Old Henry Road at Bush Farm Road</td>
<td>F</td>
<td>127</td>
<td>D</td>
<td>46</td>
</tr>
<tr>
<td>Old Henry Road at Factory Lane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Factory Lane at VAMC entrance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LaGrange Road at Factory Lane</td>
<td>F</td>
<td>265</td>
<td>F</td>
<td>104</td>
</tr>
<tr>
<td>LaGrange Road at I-265 southbound ramp</td>
<td>F</td>
<td>105</td>
<td>F</td>
<td>81</td>
</tr>
</tbody>
</table>

Figure 4.13-3 shows the morning and evening peak hour turning movements for future (2025) conditions for the intersections of LaGrange Road at Factory Lane / Chamberlain Lane and Old Henry Road at Factory Lane, the two nearest intersections that would serve the St. Joseph Site. The morning and evening peak hour vehicle trips projected to be generated by the proposed VAMC campus, and the directional distribution of these trips, were part of the new traffic analysis (Palmer Engineering 2016; see Appendix B). The trip distribution is consistent with that used in the 2012 VA Medical Center, Factory Lane Site, Traffic Impact Study (BTM 2012). The 2012 VA forecast has been updated to reflect the current proposal for the VAMC campus size, but the methodology was consistent with that used in the 2012 forecast.

Figure 4.13-3. St. Joseph Site: Future Signalized Intersection Movements for Future (2025) Years.

The data in Figure 4.13-3 show the volume of each turning movement entering and exiting the proposed VAMC campus as compared to the overall intersection movements. During the morning peak hour, vehicles entering (270) and exiting (64) the proposed VAMC campus in the direction of the LaGrange Road at Factory Lane intersection amount to approximately 10 percent of the total turning movements (3,425) at that intersection. During the evening peak hour, vehicles entering (70) and exiting (281) the
VAMC campus in the direction of the LaGrange Road at Factory Lane intersection would also be approximately 10 percent of the total turning movements (3,665). Selection of the St Joseph Site would therefore have minor impacts to the degradation of the LOS at that intersection. The LOS at the LaGrange Road and Factory Lane intersection would operate at an F with or without the VAMC, but the additional traffic with the VAMC would increase the intersection delay.

During the morning peak hour, vehicles entering (372) and exiting (97) the proposed VAMC campus in the direction of the Old Henry Road at Factory Lane intersection would amount to approximately 27 percent of the total turning movements (1,735) at that intersection. During the evening peak hour, vehicles entering (86) and exiting (344) the proposed VAMC campus in the direction of the Old Henry Road at Factory Lane intersection would be approximately 22 percent of the total turning movements (1,996). Selection of the St Joseph Site would therefore have moderate impacts to the degradation of the LOS at that intersection. The Old Henry Road at Factory Lane intersection is not signalized now. It is anticipated that a signal will be required with the addition of the VAMC. The signal will operate at LOS E in the AM peak hour and LOS C in the PM peak hour.

The VAMC campus would obviously be the source of a greater number of turning movements and higher percentage of total movements at the Factory Lane intersection with the proposed VAMC entrance (a new intersection) because this intersection would be the direct entrance and exit to and from the campus. At approximately two-thirds of the total turning movements at the intersection during the morning (63 percent) and half of the total turning movements at the intersection during the evening (54 percent) peak hours, the Alternative B would have major impacts to the degradation of the LOS at that intersection. There is currently not a signal at the proposed VAMC entrance location, so it would change from a free-flowing roadway to a signalized intersection with LOS C/C (2025 morning/evening).

In addition to measuring LOS and delay, the 2016 VA Traffic Impact Study also measured travel time data for select routes along the corridor. In the morning peak hour, the travel times with VAMC traffic are significantly higher than the future condition without a VAMC for four of the six routes – the remaining two routes are consistent with the conditions without a VAMC. In the evening peak hour, the Alternative B travel times are significantly higher than the future condition without the VAMC for five of the six routes, with the remaining route being consistent with the conditions without a VAMC. Table 4.13-6 shows the travel time results for the design year of 2025 without VA traffic and for Alternative B.

There are overall major travel time impacts to the routes under Alternative B compared to future conditions without the VAMC, particularly for VAMC traffic exiting the site and going to the I-265 interchange at LaGrange Road.

Table 4.13-4. Future (2025) Travel Time Results – St. Joseph Site.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>No VAMC AM (minutes)</th>
<th>No VAMC PM (minutes)</th>
<th>With VAMC AM (minutes)</th>
<th>With VAMC PM (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southbound I-265 at LaGrange to VAMC</td>
<td>3.3</td>
<td>3.3</td>
<td>4.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Northbound I-265 at LaGrange to VAMC</td>
<td>2.7</td>
<td>3.5</td>
<td>2.8</td>
<td>4.6</td>
</tr>
<tr>
<td>VAMC to southbound I-265 at LaGrange</td>
<td>5.6</td>
<td>4.5</td>
<td>6.7</td>
<td>6.5</td>
</tr>
<tr>
<td>VAMC to northbound I-265 at LaGrange</td>
<td>4.0</td>
<td>3.4</td>
<td>5.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Northbound I-265 at Old Henry to VAMC</td>
<td>4.0</td>
<td>4.2</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>VAMC to northbound I-265 at Old Henry</td>
<td>4.6</td>
<td>4.0</td>
<td>4.5</td>
<td>4.1</td>
</tr>
</tbody>
</table>
4.13.4 Alternative C: No Action

4.13.4.1 Construction

There would be no construction impacts for the No Action alternative.

4.13.4.2 Operation

No changes to current traffic patterns near the existing Zorn Avenue facility are expected under the No Action Alternative. While traffic along Zorn Avenue is anticipated to grow, traffic at the existing VAMC would be expected to remain constant between the baseline 2015 conditions and the future 2025 conditions under Alternative C. While the VA has a need for further capacity to accommodate additional patients, the existing site is already at its maximum capacity, so the 2016 VA Traffic Impact Study (see Appendix B) assumed traffic into and out of the facility would remain constant.

The 2016 VA Traffic Impact Study evaluated AM and PM traffic conditions for the 2025 future year scenario of Alternative C, where the VAMC remains at the Zorn Avenue site.

The 2016 VA Traffic Impact Study modeled LOS and intersection delay for the studied scenario. The Zorn Avenue at I-71 northbound ramp intersection would experience highly congested traffic conditions in the evening peak hour. Table 4.13-5 shows the intersection LOS and delay results for the design year of 2025.

Table 4.13-5. Future Level of Service and Delay at Signalized Intersections for Design Year 2025 – Zorn Avenue (Existing Site).

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (seconds)</td>
<td>LOS</td>
<td>Delay (seconds)</td>
</tr>
<tr>
<td>Zorn Avenue at I-71 northbound ramp</td>
<td>C</td>
<td>34</td>
<td>F</td>
<td>118</td>
</tr>
<tr>
<td>Zorn Avenue at Country Club Road</td>
<td>C</td>
<td>30</td>
<td>B</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 4.13-4 shows the morning and evening peak hour turning movements for future (2025) conditions for the Zorn Avenue intersection with Country Club Road / Riverwood Drive, the intersection that currently serves the VAMC campus. The morning and evening peak hour vehicle trips generated by the existing VAMC campus, and the directional distribution of these trips, were part of the traffic analysis. The volumes were based on site-specific turning movement counts completed for the Traffic Impact Study.

![Figure 4.13-4. Zorn Avenue: Future Signalized Intersection Movements for Future (2025) Years.](image-url)
The data in Figure 4.13-4 show the volume of each turning movement entering and exiting the existing VAMC campus as compared to the overall intersection movements. During the morning peak hour, vehicles entering (630) and exiting (140) the VAMC campus in the direction of the Zorn Avenue intersection with Country Club Road / Riverwood Drive would amount to approximately 40 percent of the total turning movements (1,930) at that intersection. During the evening peak hour, vehicles entering (160) and exiting (500) the VAMC campus in the direction of the Zorn Avenue intersection with Country Club Road / Riverwood Drive would be approximately 36 percent of the total turning movements (1,820). The location of the VAMC has a major impact to the intersection; however, the impact to the LOS is negligible when compared to the existing conditions.

In addition to measuring LOS and delay, the 20156VA Traffic Impact Study also measured travel time data for select routes along the corridor. The 2025 travel times between the VAMC and I-71 are relatively consistent, or slightly higher, than the 2015 existing travel times. Table 4.13-6 shows the travel time results for the future year of 2025 for Alternative C.

The impact to the increase in travel time between 2015 current conditions and 2025 under Alternative C is minor.

Table 4.13-6. Future (2025) Travel Time Results – Existing Zorn Avenue Facility.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM (minutes)</th>
<th>PM (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southbound I-71 to VAMC</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Northbound I-71 to VAMC</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>VAMC to southbound I-71</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>VAMC to northbound I-71</td>
<td>1.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
4.14 Utilities

4.14.1 Evaluation Criteria

An alternative would be considered to result in an adverse impact related to utilities if it would:

- require or result in the construction of new water supply or new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause adverse environmental effects
- require or result in the construction of new electricity or natural gas generation or transmission facilities, the construction of which could cause adverse environmental effects
- require or result in the construction of communications lines or expansion of existing facilities, the construction of which could cause adverse environmental effects

4.14.2 Alternative A: Brownsboro Site

4.14.2.1 Construction

Louisville Water Company (LWC) has indicated there is sufficient spare capacity in the existing water supply system along Brownsboro Road to accommodate the domestic and fire protection water requirements of the proposed VAMC campus. A minimum of two points of connection would be made to the LWC system: a main connection to the 12-inch water main in Brownsboro Road, and a secondary connection to the 8-inch water main in the right-of-way of Carlimar Lane. No impacts to the municipal water supply system would be expected.

LG&E stated that natural gas service is available for the proposed development; no impacts related to primary and redundant natural gas service for the replacement Louisville VAMC were identified.

Two separate sources of electrical supply are needed because the proposed VAMC would be a mission critical facility. Although there is no existing nearby electrical source that is capable of serving the site, LG&E has stated their commitment to providing service and is confident that they will be able to provide required redundant single service sources to the site. Ordinarily, LG&E would provide a single service source at its cost, requiring customary payment of up-front fees to cover initial capital costs that would be rebated as electricity was consumed and billed. But because VA requires redundant, physically separated sources, LG&E would provide primary service through design and construction of a new substation. This substation would provide service to both the VAMC and the surrounding area, but VA would be required to pay up to 25 percent of the cost for design and construction, which would be rebated over time as electricity was consumed and billed. VA would also be required to pay 100 percent of the cost of a secondary feed from an existing substation to meet its need for a redundant electrical sources. LG&E identified three possible locations from which primary and secondary services can be extended to the campus. In all three of these options, a circuit would be brought into the site from the north along Brownsboro Road. The electrical utility’s capacity and infrastructure could be expanded to accommodate the new VAMC facility, and no adverse impacts are expected.

Construction activities associated with the proposed VAMC’s need for separate redundant feeds, which would potentially include construction of a new substation by LG&E (partially funded by VA) and extension of the new circuit from the substation to the VAMC (approximately 1.5 miles). The substation would support high-voltage wires and cables next to the transformer and switches. It would include security fencing and lighting for safety. Construction and operation would result in the permanent loss of soils and vegetation and would contribute to the permanent conversion of existing land use (greenspace)
to industrial urban use. Other permanent impacts on any nearby residences would include changes to the local aesthetics and viewsheds, noise and lighting. Noise from an operating substation can be quite loud and lights operate all night to discourage vandalism and entry by unauthorized individuals. The resulting noise and light pollution may present a nuisance to nearby residences. Newer downward focused security lighting can help avoid or reduce light pollution. All other impacts would be confined to the substation footprint which is expected to be small. The new substation would also have the added beneficial impact of increasing capacity and reliability to the surrounding areas.

Louisville and Jefferson County Metropolitan Sewer District (MSD) requires that the first sixteenth of an inch of rain must be stored and treated onsite; MSD also requires the site stormwater discharges to their system for 2-year, 10-year, and 100-year storm events be limited to the predevelopment discharge of the site for each storm. The system would be designed to meet the MSD guidelines to ensure there would be no impacts to the MSD’s stormwater handling system.

MSD has indicated that they have capacity to handle the estimated sanitary sewerage flow of 170,500 gallons per day from the facility, as well as a peak flow of 875,000 gallons per day (URS/SmithGroup 2014). MSD has indicated they would reserve capacity for the proposed VAMC project and VA contractors continue to coordinate with the MSD on a regular basis regarding overall project status.

AT&T would provide telecommunications service connections from a point along Brownsboro Road, with redundant service coming in to the VAMC also from Brownsboro Road or from the south at Carlmar Lane; the final configuration would be coordinated with AT&T. No impacts were identified related to establishing or maintaining telecommunications service to the site.

4.14.2.2 Operation

Operation of the proposed VAMC facility would not be anticipated to require extraordinary utility needs beyond those of similar hospital developments. In addition, operation of the proposed facility would eventually replace the current utilities consumed by the existing Louisville VAMC in terms of the portion of those utilities that support VA-provided healthcare in the Louisville area. As described in Section 4.14.2.1, utility providers are expected to serve the operational needs of the new facility without resulting impacts.

4.14.3 Alternative B: St. Joseph Site

4.14.3.1 Construction

LWC has indicated that it can provide water supply to the St. Joseph Site along the northern boundary (Factory Lane) where there is an existing 12-inch water main (VA 2012). No impacts to the municipal water supply system would be expected.

LG&E stated that natural gas service and electric service is available for the proposed development (VA 2012); no impacts related to primary and redundant natural gas and electric service for the replacement Louisville VAMC were identified.

MSD requires that the first sixteenth of an inch of rain must be stored and treated onsite; MSD also requires the site stormwater discharges to their system for 2-year, 10-year, and 100-year storm events be limited to the predevelopment discharge of the site for each storm. The system would be designed to meet the MSD guidelines to ensure there would be no impacts to MSD’s stormwater handling system.
MSD has indicated that they have capacity to handle the estimated sanitary sewerage flow of 170,500 gallons per day from the facility, as well as a peak flow of 875,000 gallons per day (URS/SmithGroup 2014).

AT&T would provide telecommunications service to the St. Joseph Site. No impacts were identified related to establishing or maintaining telecommunications service to the site.

4.14.3.2 Operation

Operation of the proposed VAMC facility would not be anticipated to require extraordinary utility needs beyond those of similar hospital developments. In addition, operation of the proposed facility would eventually replace the current utilities consumed by the existing Louisville VAMC in terms of the portion of those utilities that support VA-provided healthcare in the Louisville area. As described in Section 4.14.3.1, utility providers are expected to serve the operational needs of the new facility without resulting impacts.

4.14.4 Alternative C: No Action

4.14.4.1 Construction

Under Alternative C, no new utility construction or connections would occur, and impacts to utilities would not result.

4.14.4.2 Operation

Under Alternative C, no new or changed utility use would occur, and impacts to utilities would not result.
This page intentionally left blank.
4.15 Environmental Justice

4.15.1 Evaluation Criteria

An analysis of environmental justice determines whether a disproportionate share of adverse human health or environmental impacts from implementing a federal action would be borne by minority or low-income populations.

The CEQ (1997) guidance states that, to determine whether impacts to minority or low-income populations are disproportionately high and adverse, agencies should consider the following:

- For human health effects (including bodily impairment, infirmity, illness, or death), whether:
 - Risks or rates of health effects are significant (as the term is used in NEPA analyses) or above generally accepted norms
 - The risk or rate of exposure to an environmental hazard for a minority or low-income population is significant and appreciably exceeds or is likely to exceed the risk or exposure rate for the general population.
 - Health effects occur in a minority or low-income population affected by cumulative or multiple adverse exposures from environmental hazards

- For environmental effects (ecological, cultural, human health, economic, or social impacts), whether:
 - There is or would be an impact on the natural or physical environment that significantly and adversely affects a minority or low-income population when those impacts are interrelated to impacts on the natural or physical environment
 - Environmental effects are significant (as the term is used in NEPA analyses) and are or may be having an adverse impact on minority or low-income populations that appreciably exceeds or is likely to appreciably exceed those on the general population
 - The environmental effects occur or would occur in a minority or low-income population by cumulative or multiple adverse exposures from environmental hazards

The environmental justice concerns typically relate to potential sources of exposure to environmental pollutants such as nearby hazardous waste sites (e.g., waste and hazardous chemical facilities, hazardous waste treatment, storage and disposal facilities, risk management plan facilities, and other industrial facilities), or traffic concerns. Pollution or impacts are relevant to environmental justice in that differences between groups have been indicated in exposures (to air toxics, contaminated water, lead based paint in older housing), susceptibility or health endpoints associated with the exposures. A 2011 literature review identified several studies that “found that living near hazardous waste sites, industrial sites, cropland with pesticide applications, highly trafficked roads, nuclear plants, and gas stations or repair shops is related to an increased risk of adverse health outcomes. Increased travel distance to reach a proposed new facility location is not considered an environmental justice issue, contrary to what many commenters indicated in their comments on the Draft EIS.

As described in Section 3.15, the affected area for the environmental justice analysis is the Louisville VAMC service area, including counties in the states of Indiana and Kentucky. The Kentucky counties of Butler and Carroll are environmental justice communities in the Louisville VAMC service area based on guidance in CEQ (1997), as described in Section 3.15.1.2. There are no environmental justice communities in the VA BHCHS service area in Indiana. Therefore, the environmental justice impact analysis for the replacement VAMC proposal is limited to the two Kentucky counties of Butler and...
Carroll. Jefferson County, Kentucky, where the physical effects of any alternative would occur, does not have any environmental justice communities.

4.15.2 All Alternatives - Construction

Construction impacts to all resources would be limited to the vicinity of the construction in the selected VAMC location in Jefferson County. This county was not defined as having an environmental justice community, nor did the EPA EJSCREEN identify an environmental justice community of concern (minority or low income) located within the immediate vicinity (1-mile radius) of the VAMC location under either Alternative A (Brownsboro Road) or B (St. Joseph Site at Factory Lane). Thus, environmental or health impacts from construction would not be disproportionately borne by any environmental justice community within the county or immediately surrounding either alternative site location.

Construction sites that are in close proximity to areas with higher concentrations of children, such as schools or parks, could attract unauthorized entry by children. Active construction sites are generally monitored or secured by fencing so the potential for unauthorized entry resulting in a safety risk would be minimal. Construction would not have environmental health risks or safety risks that would disproportionately affect children.

4.15.3 All Alternatives - Operation

The operational impacts under any alternative would occur predominantly in the vicinity of the selected VAMC location in Jefferson County. This county was not defined as having an environmental justice population; thus, environmental or health impacts would not be disproportionately borne by any environmental justice community. The proposed replacement VAMC, or continued operation of the existing VAMC, would have no adverse effect in the two counties in the service area that have minority or low-income populations (Butler and Carroll Counties, Kentucky), given their distance from the proposed project location under either alternative.

In addition, no environmental justice community of concern (minority or low-income) were identified within the immediate vicinity (1-mile radius) or surrounding area (3-mile radius) of the VAMC location, where direct project impacts would most likely occur under either Alternative A or B; for example, aesthetics, air quality, noise and land use impacts would be expected to be more pronounced immediately adjacent to the site, while traffic and utility impacts could extend more than a mile out. Thus no adverse environmental or health effects from the proposed VAMC would be disproportionately borne by any environmental justice communities immediately surrounding the site. While some Veterans who live in minority or low income areas in the western end of Louisville may have farther to travel to receive health care services, the proposed new location at Brownsboro is within the VA travel guidelines and is not considered an environmental justice issue.

Potential cumulative impacts on the surrounding population, including minorities and low-income populations, from the proposed VAMC and other past, present and reasonably foreseeable future actions are addressed in Section 4.16.

As stated in Section 1.2, the proposed project would provide Veterans in the Louisville service area with facilities of sufficient capacity to meet current and projected future healthcare needs. This would be a beneficial effect for all Veterans in the service area, including those in minority and low-income populations.
The operations conducted under any alternative for a replacement Louisville VAMC would continue to be provision of health care services to Veterans and their families, and this mission would not have environmental health risks or safety risks that would disproportionately affect children. Adverse effects to land use, traffic, or other environmental resources identified in Sections 4.1 through 4.14 would not disproportionately affect children.
4.16 Cumulative Impacts

The CEQ regulations for implementing NEPA define cumulative effects as “the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time” (40 CFR 1508.7). Section 3.16 identified the other past, present, and reasonably foreseeable future actions that may occur within the Louisville area. Cumulative impacts from these actions or other potential future actions together with those of any of the EIS alternatives are expected to be absent, negligible or minor for aesthetics, air quality, cultural resources, geology and soils, hydrology and water quality, wildlife and habitat, noise, floodplains and wetlands, socioeconomics, community services, solid waste and hazardous materials, utilities, and environmental justice. Any impacts to these resources would be similar to current VA health care services operations or to other new private and commercial developments that may occur on or near the alternative sites, and would include mitigation measures to minimize impacts as described in Chapter 5.

Land Use

The area around the Brownsboro Site is mostly developed. Little space remains for infill development other than an approximately 19-acre area of unimproved land located approximately ¼ mile northeast of the site along Herr Lane, which is owned by Providence Point Commercial, LLC. Identified as Providence Point, the proposed development of this area would include 312 residential condominiums and 138,000 square feet for mixed-use retail and offices. Development of the Brownsboro Site by VA would contribute to the complete development of remaining unimproved parcels in the area. There is a greater number of undeveloped parcels near the St. Joseph Site, although Ball Homes Inc. is developing a 406-home addition on the north side of Factory Lane, just across the road from the St. Joseph Site. Eventual development of both the Brownsboro and St. Joseph sites by some entity other than VA would be consistent with the designated zoning at the time of development, and would thus lead to a similar outcome in terms of remaining undeveloped land in each local area as if the site was developed by VA.

Transportation and Traffic (and related Air Quality Concerns)

Various improvements have been made to the surrounding transportation network resulting in changes to traffic patterns. Area improvement projects completed by the KYTC included capacity improvements to the I-264 eastbound off-ramp and construction of the ramp split (slip ramp) completed in October 2012 that connected to Old Brownsboro Road (KY 22). The I-71 and I-264 interchange was also improved in the fall of 2012 by adding auxiliary lanes on I-264 and lengthening the merge/diverge areas on I-71.

Several roadway projects would impact traffic flow patterns and volumes in the near future, including the construction of two new bridges over the Ohio River and the improvements to I-264 (Watterson Expressway) between the Westport Road and I-71 interchanges, which includes the reconstruction of the US 42 (Brownsboro Road) interchange. The Watterson Expressway (I-264) would be widened to three through lanes in each direction and auxiliary lanes between interchanges. Two-lane ramps would be added from I-264 eastbound to I-71 northbound and at the I-264 westbound off-ramp to Westport Road. A two-lane on-ramp would be provided from US 42 to I-264 westbound. Farther to the east on US 42, there is currently a half interchange with the Gene Snyder Freeway. This interchange will soon become a full interchange and US 42 will be directly connected to the east end of the Ohio River bridge.

The KYTC included these future roadway projects and projected growth and development, including the proposed Brownsboro Site VAMC campus and Providence Point’s planned nearby residential and mixed use development, that are planned for the area in their traffic forecast model in selecting the SPUI design.
for the US 42 interchange improvement project. The foreseeable actions having a cumulative impact on transportation include KYTC’s build and no build scenarios for the US 42 interchange. Therefore, the potential cumulative impacts were accounted for in the analysis of transportation impacts for the operational phase of Alternative A. As discussed in Section 4.13.2, future traffic operations would be considered acceptable at all intersections in the area surrounding the Brownsboro Site, except at Brownsboro Road and Northfield Drive. Alternative A would therefore contribute to adverse cumulative traffic impacts at this intersection along with other roadway projects and increased growth. Based on the percentage of the total turning movements at that intersection to and from the direction of the VAMC campus, the proposed VAMC would not be a significant cumulative contributor to the traffic volumes or degradation of the level of service.

The estimated construction schedules for the US 42 interchange project and the proposed VAMC campus would overlap for approximately two years, having a temporary adverse cumulative impact on the transportation network from construction traffic. The interchange project is scheduled to be completed before the VAMC campus would be completed; thus, construction traffic conditions would be expected to improve while final construction of the proposed VAMC continues.

The St. Joseph Site is located in an area of east Louisville that is partially developed with areas still available for future developments. The Traffic Study for Alternative B did assume traffic growth rates in the study to obtain 2025 No Build traffic data. KYTC also is currently designing an interchange congestion improvement project with I-265 as well as a widening and improvement project along Old Henry Road to increase capacity out to Ash Avenue. The proposed three lane sections will have one lane in each direction and a center turn lane from Bush Farm Road to KY 362 in Oldham County. These modifications would help address traffic concerns resulting from the projected growth in traffic resulting from planned projects now underway in the St. Joseph area (e.g., new construction of Thorntons, Inc., Store Support Center and recent expansion at the Ford Motor Company Kentucky Truck Plant).

Along Factory Lane, there is a residential development north of Factory Lane that has been proposed by Ball Homes with 406 homes that are located directly across from the St. Joseph Site. VA has conducted a qualitative cumulative impact analysis to compare the peak traffic volumes (Design Hourly Volumes, DHV) on the three major roads in the area.

The addition of 406 single-family homes along Factory Lane would increase the daily traffic in the area by 3,865 vehicle trips based on ITE Trip Generation (9th Edition). During the AM Peak an additional 305 vehicle trips (76 entering and 229 exiting) would be added to the surrounding roadways. The PM Peak would add 406 vehicle trips (256 entering and 150 exiting) to the surrounding roadways. These trips were assumed to be distributed in the same direction as the previous forecast (for VAMC at St. Joseph site) in order to determine the increase in DHV for the surrounding roadways.

The AM Peak would increase traffic by 34 percent along Old Henry Road. Factory Lane traffic would increase 134 percent due to the low volume of traffic that is currently using this route during the peak hours. LaGrange Road would increase by 13 percent. The PM Peak would increase traffic by 44 percent along Old Henry Road and 15 percent on LaGrange Road. Factory Lane traffic would increase by 96 percent to a total of 1291 vehicles per hour. Table 4.16-1 shows the 2025 DHV’s for each roadway with neither the neighborhood nor VA development, with the VA but not the new neighborhood, and with both the VA and the new neighborhood.

Factory Lane would experience significant increases in delay with either build scenario while Old Henry Road would see some increase in delay and LaGrange Road would see relatively minor increases in delay as LaGrange Road already has significant delays.
Table 4.16-1. Future (2025) Design Hourly Volumes – St. Joseph Site.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No Build</th>
<th>VAMC</th>
<th>VAMC + New Neighborhood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DHV (Veh/Hr)</td>
<td>DHV (Veh/Hr)</td>
<td>% Increase</td>
</tr>
<tr>
<td>AM Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Henry Road</td>
<td>1331</td>
<td>1607</td>
<td>21%</td>
</tr>
<tr>
<td>Factory Lane</td>
<td>467</td>
<td>913</td>
<td>96%</td>
</tr>
<tr>
<td>LaGrange Road</td>
<td>2792</td>
<td>3051</td>
<td>9%</td>
</tr>
<tr>
<td>PM Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Henry Road</td>
<td>1366</td>
<td>1765</td>
<td>29%</td>
</tr>
<tr>
<td>Factory Lane</td>
<td>660</td>
<td>1069</td>
<td>62%</td>
</tr>
<tr>
<td>LaGrange Road</td>
<td>2899</td>
<td>3177</td>
<td>10%</td>
</tr>
</tbody>
</table>

Finally, with the increased traffic congestion comes increased vehicular air emissions. In particular, the Brownsboro site is in a heavily developed area that already experiences heavy traffic volumes on its roads and adjacent expressway. Residents living near this site would be affected both the increased traffic related emissions associated the VAMC and the heavy traffic congestion that already surrounds them.

The traffic volumes and congestion at the St. Joseph site do not seem as heavy as at Brownsboro. However, residents around the St. Joseph site are also at added health risk by living near the Ford Motor Kentucky Truck Plant. EPA requires the plant to file a risk management plan under the Clean Air Act requirements because it uses substances with high acute toxicity and/or flammable or explosive potential and pose great risk of harm in the event of an accidental release.

Automobile compliance with updated vehicular emission controls, required fuel standards, and VAMC operation in compliance with applicable regulations and permits, including NAAQS standards designed to protect human health, would help minimize risk. Improvements by the Kentucky Transportation Cabinet (KYTC), as described in Sections 4.13 and 5.13, are expected to help reduce traffic congestion (and associated air emissions); and VA would advocate for potential solutions that KYTC could implement to improve traffic along the Brownsboro Road corridor. VA has also committed to efforts to help increase local public transit options that should help reduce driving trips over the long term. Air quality impacts are not expected to be significant.

However, VA recognizes that residents living in close proximity to the proposed VAMC campus (especially those within 500 to 600 feet) may experience more adverse effects from the increased air...
emissions than other communities, especially given their proximity to major roads (US 42/22 Brownsboro Road) and highways (I-264) that already move significant traffic volumes during certain times of day.

A substantial fraction of the U.S. population lives in close proximity to traffic. Proximity to motor vehicle traffic is associated with increased exposures to ambient noise, toxic gases and particulate matter including diesel particulates. Residential proximity to traffic has been associated with various health impacts, particularly asthma exacerbation and possibly onset of asthma. Traffic proximity is also associated with noise, which is a risk factor for various health problems; and local traffic volume is a predictor of stress (which itself is associated with health risks).

It is also important to note that there are both positive and negative aspects to living near major roads. Proximity to roads can provide access to jobs, health care, food, recreational opportunities, and other benefits. At a regional scale, the increase in traffic and emissions at the new VAMC campus at either alternative location would likely be offset by the decrease in traffic and emissions expected at the existing VAMC on Zorn Avenue.
4.17 Potential for Generating Substantial Controversy

As discussed in Chapter 6, VA has solicited input from the public and various federal, state, and local government agencies regarding the proposed replacement VAMC in Louisville. Several provided input to the programmatic and site-specific environmental assessments (EAs). While no federal and state agencies have expressed opposition to the proposed project, many local metro officials expressed concern during the public comment period on the Draft EIS about VA’s choice of the Brownsboro site as the preferred alternative and, in many cases, identified new alternative locations for VA to consider.

During both EAs, some residents and local government representatives in the vicinity of the Brownsboro Road site expressed opposition to the replacement VAMC at this location. The residents were particularly expressive regarding the potential for further deterioration of the traffic conditions in the area, changes in travel distances for Veterans to be served at the proposed replacement VAMC, and the effects on adjacent properties of stormwater runoff, aesthetic changes, and property values due to construction of the facility on a parcel that is currently undeveloped.

Since the project was first announced, several dozen newspaper articles have been published in local newspapers regarding VA’s need for a replacement VAMC in the Louisville area. In addition, articles regarding the Brownsboro Site have been published in local newspapers and stories have been broadcast by local television stations. Public input regarding the project was obtained through the scoping process and public comments on the previous EAs, and scoping for this EIS.

Over 200 people attended the public meetings on the Draft EIS, with the majority in opposition to the preferred location at Brownsboro. Similarly, an overwhelming majority of written comments that came in were in opposition to the Brownsboro location. Only a few offered support of the Brownsboro site, although almost all commenters agreed that a new VAMC should be built. Nearly one third of the commenters offered up new alternative locations for VA to consider, in Jefferson (mainly downtown and west end locations), Bullitt and Hardin Counties. The reason cited most frequently for opposition to the Brownsboro site was the concern of increased traffic congestion in an area already experiencing heavy traffic volumes. Other reasons cited included, public/veteran access (insufficient public transit); location far from where veterans live, from medical centers downtown, from doctors and staff who have to work there; no room to expand; landlocked location; single point entry/no other access in emergency; and environmental impacts (primarily aesthetics, air quality, and noise).

In summary, the proposed replacement VAMC, and particularly Alternative A, is associated with public controversy. The issues of concern to the public that were identified through the scoping and public comment process for this EIS have been evaluated in this impact analysis.
This page intentionally left blank.
4.18 Unavoidable Adverse Impacts

Unavoidable adverse impacts are those that would occur if an alternative was implemented. In many cases, adverse impacts that were identified and evaluated in this chapter are avoidable through following agency policies, procedures, and directives; complying with federal, state, and local requirements; and applying best management practices and mitigation measures, including those listed in Chapter 5.

The following unavoidable adverse impacts have been identified.

Air Quality: Air emissions, within permit limits, would occur during construction under Alternatives A and B, and during operation under Alternatives A, B, and C. These emissions would be controlled to acceptable levels by compliance with permit limits and regulatory requirements.

Aesthetics: During early stages of construction, the presence of heavy equipment and unfinished stages of site preparation and building construction would temporarily impact visual quality. Over the long term, the VAMC would create a noticeable contrast to the existing landscape, obstruct or detract from what some observers would consider a scenic view, or introduce visual elements that some observers would consider out of scale or character with the surrounding area. The extent of these adverse effects would range from negligible to major, depending on the observer.

Noise: Construction-related noise and vibration impacts would be adverse, short-term, and potentially moderate in magnitude (approaching EPA threshold levels), depending on the receptor type and proximity to the project location. Operation-related noise impacts would be minor.

Land Use: Temporary disturbances to access to adjacent land uses could occur during construction. The design heights of the VAMC buildings and parking decks would not be compatible with the height limitations in existing zoning, and would therefore be an adverse impact to adjacent land use.

Solid Waste and Hazardous Materials, Utilities: Construction would generate solid waste. Solid, medical, and hazardous waste would be generated by operation of the VAMC at the existing or a new location. Energy (electricity and natural gas) and water would be consumed during construction and operation. VA would continue to comply with VA’s Waste Prevention and Recycling Program, strategic sustainability performance plan, Sustainability Management Policy, and related agency guidance to minimize waste generation and improve energy and resource efficiency.

Transportation and Traffic: Travel times and intersection delays would be comparable for either Alternative A or a similar mixed use development that would be anticipated to locate at the Brownsboro Site. However, both scenarios would result in a level of service (LOS) F at the intersection of US42 and KY22 (Brownsboro Road at Northfield) in the AM and PM peak hours without the SPUI interchange, and LOS E in the AM peak hour and LOS F in the PM peak hour with the SPUI interchange. Operation of the proposed campus is anticipated to increase the ADT on Old Brownsboro Road, between the ramp split and US 42, by more than 20 percent over current levels which is an adverse impact. ADT is not expected to increase by more than 20 percent on any other segment of roadway in the corridor, however. Planned transportation improvements by the KYTC to surrounding roads would help improve existing and future traffic congestion in the area.

There are overall major travel time impacts under Alternative B compared to future conditions without the VAMC, particularly for VAMC traffic exiting the site and going to the I-265 interchange at LaGrange Road.
This page intentionally left blank.
4.19 Relationship Between Short-Term Uses of Man’s Environment and the Maintenance and Enhancement of Long-Term Productivity

CEQ’s NEPA regulations (40 CFR 1502.16) require consideration of the relationship between short-term uses of the environment and the maintenance and enhancement of long-term productivity. This involves considering whether an alternative would sacrifice a resource value that might benefit the environment in the long-term for some short-term value to the government or the public. In this analysis, short-term refers to a time span of approximately five years, including continued uses that would not change and the construction and initial operation of any new facilities. Long-term refers to VA’s ongoing operation of existing or new facilities for as long as the location is operated by VA and all time thereafter.

Short-term uses are generally those that determine the present quality of life for the public, including Veterans utilizing VA health care services, VA employees, and the local community. The current use of the existing Zorn Avenue VAMC is that of a facility providing health care services to Veterans. The short-term uses of the environment associated with implementing any of the alternatives would be those typical of operating a medical hospital. Table 4.19-1 summarizes the current use of each existing and potential facility location, and how that use would change under each alternative.

Table 4.19-1. Existing and Future Uses.

<table>
<thead>
<tr>
<th>Location and Existing Use</th>
<th>Change to Use, by Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Brownsboro Site - undeveloped land</td>
<td>Veterans health care</td>
</tr>
<tr>
<td>St. Joseph Site - agriculture</td>
<td>No VA use; expected development</td>
</tr>
<tr>
<td>Existing Zorn Avenue VAMC - Veterans health care</td>
<td>No VA use; re-use to be determined</td>
</tr>
</tbody>
</table>

Long-term productivity for a medical facility refers to its capability to support and improve the health of patients seeking care, which is a component of the human environment. Alternatives A and B would improve one or more aspects of the long-term productivity of the Louisville Veterans health care services by providing Veterans with facilities of sufficient capacity to meet their current and projected future healthcare needs in the Louisville service area. The clear goal of VA’s proposal for a replacement VAMC is to maintain and enhance the long-term productivity (capacity to provide health care for Veterans) of its facilities.

No measurable difference in the current level of impact to long-term productivity of the human or natural environment is expected, regardless of changes that may be made in the location and levels of activities at a VAMC in Louisville:

- The proposal is for a campus to replace the existing Louisville VAMC within the same metropolitan area. Long-term effects of facility operation would remain generally similar across the alternatives, with the exception of cumulative effects related to traffic compared to the differing current condition baseline traffic scenarios at each location. Because development of the Alternative A and B parcels is expected to occur by others regardless of VA’s selected alternative, the long-term traffic and land use conditions would change at both the Brownsboro Site and St. Joseph Site, even if VA did not construct and operate a VAMC there.
- Construction being considered by VA under Alternatives A and B could result in disturbance, use, and long-term decreased productivity of relatively small amounts of previously undisturbed
land. In both cases, these potential locations for constructing and operating a replacement VAMC represent development similar to development that would be expected to occur by others on each parcel in the absence of VA’s use. The mitigation measures (see Chapter 5), best management practices, federal and state regulatory compliance, and adherence to VA’s policies and guidance for new facilities would consider and seek to minimize any potential for impacts to the environmental values and characteristics of the natural and human environment.

- Ongoing management of sanitary solid waste and medical waste generated by existing or new locations would continue to require the use of energy and space at local or regional disposal facilities. Construction debris would similarly require appropriate disposal. Land used for waste management requires a permanent commitment of terrestrial resources, preventing its long-term environmental productivity. A VA health care facility would not constitute a novel waste source nor generate more than a minor or negligible portion of the volume of the waste handled by a facility; thus, it would have a similarly minor or negligible contribution to the lack of long-term productivity of the land used for disposal. Adequate landfill capacity has already been developed in the area to accommodate any construction waste associated with the alternatives, and thus would also have a minor or negligible contribution to the lack of long-term productivity of the land used for its disposal.
4.20 Irreversible or Irretrievable Commitments of Resources

The CEQ NEPA regulations (40 CFR 1502.16) require an analysis of irreversible and irretrievable commitments of resources, such as the use or consumption of a resource that is neither renewable nor recoverable, or the unavoidable destruction of environmental resources. Irreversible and irretrievable commitments of resources from the replacement Louisville VAMC alternatives include fossil fuel-based energy consumption and use of nonrenewable materials for construction and operation. Construction, operation, and transportation would mainly rely on fossil fuel-based energy to run construction equipment; supply heat, air conditioning, and electricity for operation of the medical facilities; and power private, public, and potentially volunteer transportation of patients to and from the facilities. Energy would be consumed in the form of gas- and oil-generated electricity, fuel oil, natural gas, propane, gasoline, and diesel fuel. Materials from nonrenewable sources used for construction and operation include those produced from mined materials (such as metals) or petroleum-based plastics, polymers, and other materials.

In compliance with Executive Order 13693, VA’s strategic sustainability performance plan, in part, identifies approaches for reducing energy use and cost, finding renewable or alternative energy solutions, and using recycled and sustainably produced materials. The provisions of the plan apply agency-wide, including during implementation of the selected alternative from this EIS process, reducing the irreversible and irretrievable commitment of resources.
This page intentionally left blank.
5.0 MITIGATION

The Council on Environmental Quality (CEQ) National Environmental Policy Act (NEPA) regulations (40 Code of Federal Regulations [CFR] 1508.20) state that mitigation includes:

- Avoiding the impact altogether by not taking a certain action or parts of an action
- Minimizing impacts by limiting the degree or magnitude of the action and its implementation
- Rectifying the impact by repairing, rehabilitating, or restoring the affected environment
- Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action
- Compensating for the impact by replacing or providing substitute resources or environments

The measures and best practices identified in this environmental impact statement (EIS) include measures that are incorporated into an alternative; compliance with federal, state, and local regulatory requirements; best management practices incorporated into an alternative; and additional VA-proposed protective measures.

VA would rely on the Louisville District of the U.S. Army Corps of Engineers (USACE) to manage completion of design and construction activities. They would have oversight of best management practices and ensuring that all permits are secured in a timely manner prior to the start of any work covered by those permits. The USACE would ensure that all construction activities are in compliance with applicable federal, state and local regulations, guidelines and policies.

The record of decision (ROD) for an EIS binds an agency to implement specific mitigation commitments stated in the ROD. In addition, compliance with regulatory requirements is enforced by the respective regulatory agency. For example, compliance with air quality regulations would be enforced by the Kentucky Department for Environmental Protection – Division for Air Quality. Where relevant for a particular alternative, the following measures can reduce the adverse impacts that were identified in Chapter 4.

5.1 Aesthetics

The Department of Veterans Affairs (VA) would consult with local officials and consider recommendations on setbacks, landscaping, lighting, and exterior facades in accordance with 40 United States Code 619(c) and (d).

Outdoor construction activities would generally cease at sunset so there would be no impact from the use of construction equipment lights for nighttime lighting, though some second shift work may be necessary on occasion. For example, the contractor may be forced to work late to secure the site for impending inclement weather, pour concrete during evening hours when the weather is cooler, or perform emergency repairs to an underground piped system such as a ruptured water main. Second shift work may also be necessary to perform utility connections or cutovers to minimize adverse impact to surrounding neighborhoods and businesses, or when necessary to maintain or regain schedule on critical path activities. Any security lighting used during construction would be directed downward to minimize light trespass onto adjacent property and land uses.

Exterior lighting of the campus would be controlled to minimize light trespass but would be designed to meet physical security requirements. Light fixtures (or luminaires) would use the cutoff design that
directs light downward and minimizes glare. Fixtures for the security fence would be a similar style as adjacent neighborhood fixtures provided that cutoff design requirements are met. The exterior lighting would be generally consistent with the Land Development Code.

To provide additional screening between the VA facilities and the residential neighborhoods on the east and south sides, a combination of shade and ornamental trees would be planted, to form a natural screen near the property boundary in the transition zone starting at the perimeter fence.

5.2 Air

Measures to minimize particulate emissions during construction are specified by Louisville Metro Air Pollution Control District (APCD) Regulation 1.14 on controlling fugitive dust. VA would require the general construction contractor to prepare and submit a dust control plan to be reviewed and approved by the APCD and/or the USACE as appropriate, before the start of any site preparation and construction activities. The plan will specify the abatement measures to minimize visible dust emissions beyond the property boundaries, and will include the following measures:

- Provide the approved dust control plan to subcontractors and establish expectations for compliance with the plan.
- Post site rules for dust control.
- Install and maintain trackout control devices at the construction entrance and exit locations.
- Establish type and frequency of application of dust suppression methods, such as water sprays or dust palliatives.
- Apply dust suppression (water or palliative) on all disturbed ground surfaces and material stockpiles.
- Cover loaded haul trucks entering and exiting the project site.
- Limit vehicle speed to 15 miles per hour or less on the project site.
- Clean paved road surfaces adjacent to the project site of dirt and mud from construction traffic and activities.
- Suspend earth-moving activities during high wind conditions.
- Establish a schedule to monitor abatement measures for effectiveness and make adjustments as necessary.

The construction or installation and operation of emission source equipment (boilers, cooling towers, generators, and gasoline dispensing equipment) would comply with Louisville Metro APCD permit requirements.

VA/USACE would follow all federal, state and local Clean Air Act regulations and would ensure all required permits, including those required by the Louisville Metro APCD, are obtained. VA will implement any measures to minimize or monitor emissions as may be required by the Louisville Metro APCD as a condition of issuing the construction or operating permits.

5.3 Cultural Resources

Under Alternatives A and B, VA's plans for disposition of the potentially National Register of Historic Places-eligible existing Zorn Avenue VA Medical Center (VAMC) have not been determined and would
be the subject of a future reutilization feasibility study, National Environmental Policy Act analysis, and consultation under Section 106 of the National Historic Preservation Act, as appropriate.

5.4 Geology and Soils

Designing and constructing the facilities of the VAMC campus following the karst-related guidelines of the Louisville Metro Government Land Development Code will ensure that the potential for adverse impacts of development on karst terrain are addressed. VA will ensure the requisite karst survey or geological assessment has been or would be completed by a State of Kentucky licensed engineer, and construction performance standards that address karst features are included in the site design.

During construction, a geotechnical engineer will be present to observe the excavation, rock removal, and geothermal bore drilling to determine whether treatment methods will be required for any exposed sinkholes and to minimize the potential for karstic activity. Continuous monitoring of site work will facilitate real time observation of water and soil behavior that may not be evident during testing. Treatment methods would be based on the size of the karst or sinkhole opening and would be a site-specific and condition-specific determination made by the geotechnical engineer. Examples might include concrete plugs or various sizes of rock rip-rap and aggregate overlain by compacted clay backfill.

Any blasting operations, if needed, will be conducted by a person licensed by the Kentucky Department of Natural Resources. Contractor compliance with applicable federal and state laws for blasting and safety would be enforced by the USACE who would oversee construction. If blasting is determined to be needed, the contractor would be required to follow the USACE blasting guide specifications as follows:

- Perform blasting in conformance with Federal, State, and local laws and safety regulations, including EM 385-1-1 (USACE Safety and Health Requirements Manual);
- Submit notice 15 days prior to starting work to facilitate advance notification of cities of Crossgate and Graymoor-Devondale and adjacent property owners.
- Submit a Blasting Plan; the plan would also be submitted to the Kentucky Department of Natural Resources if requested by the Department;
- Obtain written approval prior to performing any blasting; and
- Notify the Contracting Officer 24 hours prior to blasting.

The Blasting plan will be prepared and sealed by a registered professional engineer, and include calculations for overpressure and debris hazard. Provisions for storing, handling and transporting explosives as well as for the blasting operations also will be included in the plan. The early notification requirements allow the VA Public Affairs Office time to notify the affected public well in advance of when blasting activities would occur.

In addition, even though not required by existing blasting regulations, VA has agreed to provide advance written notice of the blasting schedule to the cities of Crossgate and Graymoor-Devondale and area residents immediately adjacent to the site boundary. The notice will include a point of contact for requesting a pre-blast survey as well as for additional questions related to any blasting activities. In particular, residents immediately adjacent to the project site would have the opportunity to request a pre-blast survey of their structure though the contractor would determine on a case-by case basis whether conditions warrant such a survey.
Finally, given the potential for construction related noise concerns to approach or exceed the noise abatement criteria and the fact that construction activities such as pile driving and blasting events may occur, VA (or USACE on its behalf) would establish a mechanism for reporting construction related noise concerns.

As with any other commercial development, if needed, the building would be constructed to incorporate a radon mitigation system in compliance with all applicable design and construction standards, if such a system is required to ensure that building occupants would not be exposed to radon in excess of 4 picocuries per liter.

Construction- and operation-related geology and soils impacts, including erosion and sedimentation impacts, would be minimized through implementation of the following:

- Design, install, and maintain erosion and sediment controls during the duration of construction activities and any subsequent soil disturbance activities near site drainages. Such controls may include silt fences, runoff control berms, erosion control fabric, and rip-rap.
- Minimize the disturbance of steep slopes.
- Provide an undisturbed natural buffer between the activity area and surface drainages, and direct stormwater runoff to vegetated areas.
- Develop a stormwater pollution prevention plan, consistent with the requirements of the construction general permit.
- Implement spill and leak prevention and response procedures.
- Use appropriate dust control methods during construction activities. Dust control methods include water sprays, chemical soil additives, and wheel washers.
- Suspend construction activities during periods of high winds.

Contractor selection and bore drilling procedures for the geothermal system would follow the requirements and best practices detailed in VA’s Master Construction Specification, Division 23 81 49, Ground-Source Heat Pumps. This specification requires (1) the contractor is accredited by the International Ground Source Heat Pump Association (IGSHPA) or an equivalent nationally recognized association, (2) loops are constructed in accordance with specific IGSHPA configurations, and (3) specific borehole construction and grouting practices are utilized to protect hydrogeological resources.

Landscape vegetation would be installed and maintained throughout the lifetime of this campus.

5.5 Hydrology and Water Quality

The Stormwater Pollutant Prevention Plan and Erosion Prevention and Sediment Control Plan will outline required measures and best management practices to implement, monitor, and maintain to ensure stormwater runoff during construction is controlled and water quality is not adversely affected. VA (and/or USACE on its behalf) will ensure the construction contractor adheres to both plans, as well as the groundwater protection plan and agency specifications for borehole drilling.

Construction- and operation-related hydrology and water quality impacts, including erosion and sedimentation impacts, would be minimized through implementation of the best management practices listed for Geology and Soils (Section 5.4). Additional impacts would be minimized through implementation of the following:
• Design new facilities to minimize the area of impervious surfaces (to rely more on natural hydrology), or mitigate the effects; the current design does that to the extent feasible by designing multi-story buildings and using parking garages instead of surface lots.

• Route stormwater runoff from impervious surfaces to stormwater retention and drainage areas.

• Implement spill and leak prevention and response procedures, including maintaining a complete spill kit at the project area, to reduce the impacts of incidental releases of vehicle fluids.

• Design onsite construction staging areas to minimize stormwater runoff from these areas directly to drainage.

Before drilling any geothermal bores, a groundwater protection plan (GPP) would be prepared in accordance with Kentucky Administrative Regulation (Title 40, Chapter 5:037). 401 KAR 5:037 § 2 references the Scope and Applicability for the proposed activities while § 3 refers to the Preparation of GPPs. A GPP establishes the minimum acceptable groundwater protection practices for such construction. A state-certified water supply well driller would construct the geothermal bores; the driller would provide project-specific details in the GPP, identifying the construction practices that would be implemented to protect groundwater for this specific project, such as full-depth grouting for each borehole to prevent shallow, often lower-quality groundwater from reaching deeper groundwater. The GPP would be retained in the drill rig(s) or contractor vehicle(s) that would be present onsite during the drilling.

The approved design, operation, and maintenance of the stormwater management infrastructure will ensure stormwater runoff does not exceed predevelopment site hydrology (meeting predevelopment discharge rates for the 2-, 10-, 25-, and 100-year storm events) in accordance with the Metropolitan Sewer District (MSD) stormwater discharge regulations.

VA proposes to control infiltration of storm water from the site into the underground water by proactively managing with grading and the installation of lined storm water ponds. This mitigation strategy would reduce the amount of groundwater recharge coming from the site by adding impervious ground cover and conveying water into lined detention basins on the site.

VA has committed to not adversely impacting the adjacent properties and would improve the drainage along the east property line as required by MSD. Specifically, the fence along the east boundary of the site would allow for the placement of a drainage ditch along the east edge of the VA property that would collect runoff from adjacent yards and direct runoff to the collection systems on the VA site that become part of the VA site collection, storage and discharge of stormwater. Drainage from the site would not be directed towards, or through the perimeter fence on the site’s east and south boundaries.

The discharge of groundwater to surface water from dewatering during construction or a sump during operation would be permitted in accordance with the Kentucky Pollutant Discharge Elimination System and would be monitored to ensure water quality standards are maintained to prevent adverse impacts from occurring.

The geothermal system would be constructed in accordance with VA’s Master Construction Specification, Division 23 81 49, Ground-Source Heat Pumps, which specifies strict requirements related to the chemical and physical properties and limits on the toxicity of the heat transfer fluid used in closed loop geothermal systems at VA facilities. The specification also requires installation of an Underwriter Laboratories-listed leak detection system with a sensor probe, control panel, and LED indicators.
5.6 Wildlife and Habitat

Measures that would be employed to minimize wind erosion of soils would also avoid noxious weed infestations, such as minimizing the amount of exposed soils at any given time during construction activities, quickly revegetating disturbed areas following completion of activities, and maintaining landscaping during the campus operation. Monitoring and eradication will also be implemented, as needed, to reduce noxious weeds from invading the project site after ground disturbance occurs and before landscaping is installed.

To protect migratory birds if construction is scheduled to begin between April and July, the project site will be surveyed by a USACE qualified biologist to confirm the absence of nests and nesting activity. If found, active nests (containing eggs or young) of threatened or endangered species will be avoided until they are no longer active or the young birds have fledged. The Kentucky Department of Fish and Wildlife Resources will be contacted for guidance on appropriate avoidance measures for specific species and distances to keep away from active nests.

To avoid impacts to roosting northern long-eared bats at the Brownsboro Site and to the Indiana bat and northern long-eared bat at the St. Joseph Site, VA would ensure that any unavoidable tree removal would only occur between October 1 and March 31, or that tree removal during roosting season was preceded by a mist net survey to confirm the absence of any listed bats from the site. These actions would be coordinated in consultation with the Kentucky Ecological Services field office of the U.S. Fish and Wildlife Service (FWS) to ensure compliance with Section 7 of the Endangered Species Act.

VA recently completed northern long-eared bat 4(d) rule streamlined consultation. A final 4(d) rule for the species was published on January 14, 2016. While this project may affect the bat, FWS has determined that there are no effects beyond those previously disclosed in the U.S. FWS’s programmatic biological opinion for the final 4(d) rule dated January 5, 2016. Any taking that may occur incidental to this project is not prohibited under the final 4(d) rule (50 CFR §17.40(o)). No further consultation is required for the northern long-eared bat.

Due to the intervening time, a new field survey for running buffalo clover would be conducted prior to site clearing under Alternative B. VA would coordinate and consult with the Kentucky Ecological Services field office of the FWS on field methods for the survey and specific requirements to fully comply with Section 7 of the Endangered Species Act if this plant species is identified onsite in areas proposed for disturbance.

5.7 Noise

VA and/or USACE will conduct a community outreach effort to local elected officials, businesses, and residents to provide early information and schedules on construction activities and expected noise levels and durations.

The construction activities associated with the project will be performed in accordance with the Louisville-Jefferson County Metro Government noise ordinance and will generally occur between 7:00 a.m. and 9:00 p.m. daily. Exceptions to this will be addressed through community outreach.

Construction contractors will be required to shut down heavy equipment and stationary construction equipment if not actively being used for construction and maintenance operations.
VA (or USACE on its behalf) will include in the construction bid documents the requirement for offerors to submit details of their plan to manage site use, including limited onsite parking during construction. VA anticipates that such plans may also mitigate noise impacts to the extent it decreases the number of construction worker vehicles commuting to the site.

Any blasting operations, if needed, will be conducted by a person licensed by the Kentucky Department of Natural Resources. Contractor compliance with applicable federal and state laws for blasting and safety would be enforced by the USACE who would oversee construction. If blasting is determined to be needed, the contractor would be required to follow the USACE blasting guide specifications as follows:

- Perform blasting in conformance with Federal, State, and local laws and safety regulations, including EM 385-1-1 (USACE Safety and Health Requirements Manual);
- Submit notice 15 days prior to starting work to facilitate advance notification of cities of Crossgate and Graymoor-Devondale and adjacent property owners;
- Submit a Blasting Plan; the plan would also be submitted to the Kentucky Department of Natural Resources if requested by the Department;
- Obtain written approval prior to performing any blasting; and
- Notify the Contracting Officer 24 hours prior to blasting.

The Blasting plan will be prepared and sealed by a registered professional engineer, and include calculations for overpressure and debris hazard. Provisions for storing, handling and transporting explosives as well as for the blasting operations also will be included in the plan. The early notification requirements allow the VA Public Affairs Office time to notify the affected public well in advance of when blasting activities would occur.

In addition, even though not required by existing blasting regulations, VA has agreed to provide advance written notice of the blasting schedule to the cities of Crossgate and Graymoor-Devondale and area residents immediately adjacent to the site boundary. The notice will include a point of contact for requesting a pre-blast survey as well as for additional questions related to any blasting activities. In particular, residents immediately adjacent to the project site would have the opportunity to request a pre-blast survey of their structure though the contractor would determine on a case-by-case basis whether conditions warrant such a survey.

Finally, given the potential for construction related noise concerns to approach or exceed the noise abatement criteria and the fact that construction activities such as pile driving and blasting events may occur, VA (or USACE on its behalf) would establish a mechanism for reporting construction related noise concerns.

5.8 Land Use

VA (or USACE on its behalf) would notify adjacent property owners of construction schedules and activities to minimize disturbance to land uses during construction. Outdoor construction activities would generally cease at sunset to minimize disruption to access to residential areas. Construction would not block ingress/egress to adjacent businesses during their business hours of operation. Construction activities will generally occur between 7:00 a.m. and 9:00 p.m. daily but as noted above, exceptions may occur and will be addressed through community outreach.
5.9 Floodplains and Wetlands

There are no wetlands present at the Brownsboro Site (Alternative A). At the St. Joseph Site (Alternative B), site design would avoid jurisdictional (regulated) wetlands to the extent practicable. In the event that wetlands would be impacted by construction activities, VA would consult with, and obtain the necessary permit(s) from USACE and the Kentucky Department for Environmental Protection in compliance with Sections 401 and 404 of the Clean Water Act. As directed, VA (or USACE on its behalf) would conduct any mitigation requirements to compensate for the lost function and value of wetlands either by creating or enhancing other wetlands onsite or at an offsite location through an established mitigation bank, or through an in-lieu fee program.

5.10 Socioeconomics

No adverse socioeconomic effects were identified.

5.11 Community Services

General contractors would minimize needs related to emergency response and public safety services by properly maintaining construction equipment and implementing “good housekeeping” procedures to prevent fire ignition, educating construction workers in Occupational Safety and Health Administration-required safety standards, and securing and monitoring the construction site. In addition, the general contractor would be required to follow the occupational health and safety, accident prevention, fire safety, and site security policies of the federal agency overseeing construction.

5.12 Solid Waste and Hazardous Materials

Construction- and operation-related solid waste and hazardous materials impacts would be minimized through implementation of the following:

- Conduct proper vehicle maintenance and inspection to reduce the potential for incidental releases of vehicle fluids.
- Should environmental contamination be encountered during construction activities, all waste would be abated and managed in accordance with regulations and disposed in appropriate disposal facilities.
- In the event that a new underground storage tank and/or piping is installed as part of facility construction, Kentucky Department for Environmental Protection must be notified. A permit is also required to install aboveground storage tanks for petroleum products or hazardous substances.
- Maximize reuse and recycling of wastes to minimize quantities destined for disposal.
- Implement construction and operational best management practices to minimize effects and comply with applicable regulations.

5.13 Transportation and Traffic

VA will continue to coordinate with the Kentucky Transportation Cabinet (KYTC) on the planning, design, and construction of the Watterson Expressway (I-264) and US 42 interchange improvement project, which includes construction of the intersection at KY 22 (Old Brownsboro Road) and the entrance/exit to the VAMC campus.
VA will include in the construction bid documents the requirement for offers to submit details for their plan to manage site use, including limited onsite parking during construction. VA anticipates that such plans may also mitigate impacts to local traffic to the extent it decreases the number of construction worker vehicles commuting to the site.

The Leadership in Energy and Environmental Design Silver certification design for the VAMC campus requires energy conservation measures that reduce air pollutants associated with combustion sources, which in turn, also reduces vehicle trips. Some of these measures include vehicle-sharing (carpool) programs and parking incentives, public transit programs, and bicycle storage racks.

VA will implement, if practicable and feasible, flextime and variable staff work schedules with the objective of avoiding morning and evening peak hour traffic.

VA will request service and supply deliveries be scheduled, if practicable and feasible, to avoid morning and evening peak hour traffic.

VA will encourage the Transit Authority of River City (TARC) to extend bus routes onto the VAMC campus to serve the VAMC and Veterans Benefit Administration buildings for patients, visitors, and staff to reduce personal vehicle trips.

VA will advocate for potential solutions that KYTC could implement to improve traffic along the Brownsboro Road corridor, including:

- Widen KY 22 to five lanes.
- Widen Herr Lane to three or five lanes to improve the connection between US 42 and Westport Road.
- Convert the US 42 intersection with KY 22 and Northfield Drive to right-in/right-out. This option was recommended in the 2011 Scoping Study for the US 42 interchange, but was not carried forward into Phase 1 Design or included in the Interchange Modification Report. Reductions in traffic from the opening of the Westport Road interchange and the ramp split from the I-264 eastbound off-ramp directly to KY 22 along with heavy public opposition led the KYTC to drop converting the intersection from consideration.
- Relocate the US 42 / KY 22 intersection to Glenview Avenue and construct a connector road. This option was explored as part of the 2011 Scoping Study for the US 42 interchange and as part of the construction of the ramp split from the eastbound I-264 off-ramp directly to KY 22. The connector road would be needed if the US 42 intersection with KY 22 and Northfield Drive was converted to right-in/right-out.
- Consider adding an interchange along I-71 at the US 42 underpass.
- Consider a direct connection between KY 22 and I-264 westbound using a flyover ramp. As part of the Value Engineering Study performed for the US 42 interchange in December 2014, KYTC considered a direct flyover ramp connection from KY 22 traffic directly over the I-264 eastbound off-ramp and I-264 before merging with the I-264 westbound on-ramp. This addition would remove a considerable amount of traffic from the single-point urban interchange (SPUI) intersection and from the US 42 intersection with KY 22 and Northfield Drive. The additional construction cost of $4.4 million and concerns for driver expectancy with this configuration led the KYTC to drop this option. However, the current design of the SPUI will be developed to not preclude the option of adding a direct flyover connection.
5.14 Utilities

Construction- and operation-related utilities impacts would be minimized through implementation of the following:

- Consider use of renewable energy generation and energy/water conservation measures in the design of new and renovated facilities.
- Utilize native vegetation and drought-resistant vegetation for area landscaping to reduce irrigation requirements.
- Comply with Louisville Water Company, MSD, and Louisville Gas & Electric requirements.

5.15 Environmental Justice

No environmental justice impacts were identified.
6.0 AGENCY COORDINATION AND PUBLIC INVOLVEMENT

The goals of agency coordination and public involvement are to provide thorough information in a convenient and timely manner to allow meaningful input to the National Environmental Policy Act (NEPA) process, and help facilitate decisions to be made by the U.S. Department of Veterans Affairs (VA). Agencies and the public are commonly referred to as “stakeholders”. Stakeholders include those who may be affected by or have an interest in VA’s proposal for a replacement VA medical center (VAMC) and the NEPA process, including individuals, interest groups, community organizations, elected officials, tribal governments, and federal, state, or local government agencies.

6.1 Agency Coordination

Coordination with federal, state, or local agencies is required by certain laws such as the Endangered Species Act, National Historic Preservation Act, and Clean Water Act; executive orders addressing interagency and intergovernmental coordination; and the Council on Environmental Quality (CEQ) regulations implementing NEPA that emphasize cooperative consultation among agencies. Agencies with jurisdiction by law or with special expertise with respect to any environmental issue are requested to cooperate in the NEPA process (40 Code of Federal Regulations [CFR] 1501.6). VA notified, via direct-mail postcard, the following federal, state, and local agencies and elected officials of VA’s intent to prepare this environmental impact statement (EIS):

- U.S. Department of Agriculture – Natural Resources Conservation Service
- U.S. Environmental Protection Agency, Region 4 – NEPA Program Office
- U.S. Fish and Wildlife Service – Southeast Region, Kentucky Ecological Field Services Office
- U.S. Senator Mitch McConnell (KY)
- U.S. Senator Rand Paul (KY)
- U.S. Senator Dan Coats (IN) [position now held by Todd Young]
- U.S. Senator Joe Donnelly (IN)
- U.S. Representative Ed Whitfield (KY-1st District) [position now held by James Comer]
- U.S. Representative Brett Guthrie (KY-2nd District)
- U.S. Representative John Yarmuth (KY-3rd District)
- U.S. Representative Thomas Massie (KY-4th District)
- U.S. Representative Hal Rogers (KY-5th District)
- U.S. Representative Larry Buschon (IN-8th District)
- U.S. Representative Todd Young (IN-9th District) [position now held by Trey Hollingsworth]
- Kentucky Department for Environmental Protection
- Kentucky State Historic Preservation Officer (SHPO)
- Kentucky Governor Steve Beshear [position now held by Matt Bevin]
- Kentucky State Representative Bob DeWeese (48th District) [position now held by Ken Fleming]
- Develop Louisville
- Louisville Metro Air Pollution Control District
- Louisville Metro Department of Public Works
- Louisville Metro Parks Department
- Louisville Mayor Greg Fischer
- Louisville Metro Council

VA requested scoping input for this EIS, while acknowledging that information, comments, and feedback provided for the previous environmental assessments (EAs) did not need to be re-submitted. New input
was received during this EIS scoping period from Louisville Metro Councilwoman Angela Leet; her input is included in the scoping summary in Section 6.2.2 and Appendix C.

During development and review of the programmatic and site-specific EAs, VA contacted federal, state, and local agencies with oversight responsibilities related to this project. Table 6-1 lists the agencies and the input received.

Table 6-1. Agency NEPA Coordination and Input to Date for Replacement Louisville VAMC.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Input*</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Fish and Wildlife Service – Southeast Region</td>
<td>Programmatic EA: Brownsboro Site was previously cleared, is adjacent to a highway, and surrounded by development. Based on these factors, the site does not contain suitable roost trees for Indiana bats and future development would not likely adversely affect the Indiana bat. Indiana bat and running buffalo clover may be present at St. Joseph Site and Zorn Avenue campus. Site-specific EA: Brownsboro Site should be surveyed for newly listed northern long-eared bat.</td>
</tr>
<tr>
<td>U.S. Natural Resources Conservation Service – Mount Washington Service Center</td>
<td>Programmatic EA: No response was reported. Site-specific EA: Development of Brownsboro Site does not require further consideration for protection of prime or unique farmland.</td>
</tr>
<tr>
<td>Kentucky Department for Environmental Protection</td>
<td>Programmatic EA: Division of Air Quality stated that any future VA development of any site would be required to comply with regulations 401 KAR 63:010 (Fugitive Emissions), and recommended that local government regulations should be considered. Nature Preserves Commission indicated that they did not have any concerns. Division of Water stated that best management practices should be used to reduce runoff from development of any site into adjacent surface waters. Division of Waste Management stated that they do not have any comments and would provide comments after the site selection has been completed. Site-specific EA: No comments received.</td>
</tr>
<tr>
<td>Kentucky Department of Fish and Wildlife Resources</td>
<td>Programmatic EA: • Impacts to aquatic resources should be minimized through the implementation of strict erosion control measures prior to any future construction to minimize siltation into streams and stormwater drainage systems located within the project area. Such erosion control measures may include, but are not limited to, silt fences, staked straw bales, brush barriers, sediment basins, and diversion ditches. Erosion control measures would need to be installed prior to any future construction and should be inspected and repaired regularly as needed. • No listed threatened or endangered species were identified for the Brownsboro Site. However, this site falls within known Indiana bat summer maternity habitat and is considered a sensitive area for this species. The Kentucky Department of Fish and Wildlife Resources stated that further coordination with the U.S. Fish and Wildlife Service Kentucky Field Office would be required prior to any future construction. • No listed species were identified at the St. Joseph Site, but impacts to streams and wetlands should be addressed if deemed necessary. • Louisville crayfish may be present, and the campus is also within sensitive habitat for the Indiana bat. Site-specific EA: No comments received.</td>
</tr>
</tbody>
</table>
Table 6-1. Agency NEPA Coordination and Input to Date for Replacement Louisville VAMC.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Input*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky Transportation Cabinet (KYTC)</td>
<td>Programmatic EA:</td>
</tr>
<tr>
<td></td>
<td>• The KYTC has planned improvements to the I-264 and Brownsboro Road</td>
</tr>
<tr>
<td></td>
<td>interchange (single point urban interchange). The reconfigured</td>
</tr>
<tr>
<td></td>
<td>interchange would likely be able to accommodate the proposed VAMC</td>
</tr>
<tr>
<td></td>
<td>without significant, additional modifications to roadways.</td>
</tr>
<tr>
<td></td>
<td>• At the St. Joseph Site, KYTC indicated that the Old Henry Road/I-265</td>
</tr>
<tr>
<td></td>
<td>interchange has ample capacity for the future VAMC. This intersection</td>
</tr>
<tr>
<td></td>
<td>was designed with the development of the surrounding area for</td>
</tr>
<tr>
<td></td>
<td>residential, commercial, and medical facilities in mind, including</td>
</tr>
<tr>
<td></td>
<td>the St. Joseph Site. A connector road from the St. Joseph Site to</td>
</tr>
<tr>
<td></td>
<td>Old Henry Road would be the best way to access the site.</td>
</tr>
<tr>
<td></td>
<td>• At the existing Zorn Avenue campus, westbound I-71 frequently backs</td>
</tr>
<tr>
<td></td>
<td>up to Zorn Avenue. I-71 highway expansion in the works and should go</td>
</tr>
<tr>
<td></td>
<td>a long way to solve the problems. No changes to I-71/Zorn Avenue</td>
</tr>
<tr>
<td></td>
<td>interchanged planned or needed. Zorn Avenue also has plenty of</td>
</tr>
<tr>
<td></td>
<td>capacity.</td>
</tr>
<tr>
<td></td>
<td>Site-specific EA: No comments received.</td>
</tr>
<tr>
<td>Kentucky Heritage Council (SHPO)</td>
<td>Programmatic EA:</td>
</tr>
<tr>
<td></td>
<td>• The SHPO concurred with findings that the Brownsboro Site does not</td>
</tr>
<tr>
<td></td>
<td>contain cultural resources listed, or eligible for listing, in the</td>
</tr>
<tr>
<td></td>
<td>National Register of Historic Places and that no further archaeological</td>
</tr>
<tr>
<td></td>
<td>investigations are indicated. Additional analyses would be required</td>
</tr>
<tr>
<td></td>
<td>to evaluate direct and indirect impacts to above ground cultural</td>
</tr>
<tr>
<td></td>
<td>resources within the area of potential effect (APE).</td>
</tr>
<tr>
<td></td>
<td>Site-specific EA: A cultural resources survey of the APE was completed,</td>
</tr>
<tr>
<td></td>
<td>with a recommended finding of no adverse impacts to historic</td>
</tr>
<tr>
<td></td>
<td>properties. SHPO reviewed and determined that undertaking at</td>
</tr>
<tr>
<td></td>
<td>Brownsboro Site will have no adverse effect on historic properties.</td>
</tr>
<tr>
<td>Jefferson County – Louisville Metro Public Works and Assets</td>
<td>Programmatic EA:</td>
</tr>
<tr>
<td></td>
<td>• For Brownsboro Site, stated concern regarding the potential future</td>
</tr>
<tr>
<td></td>
<td>loss of pervious surfaces but did not indicate that this would</td>
</tr>
<tr>
<td></td>
<td>prevent the future development of a VAMC at the site. The site</td>
</tr>
<tr>
<td></td>
<td>includes prime and unique farmland soils. Future construction of a</td>
</tr>
<tr>
<td></td>
<td>VAMC at this site would create traffic and associated air quality</td>
</tr>
<tr>
<td></td>
<td>issues. The US 42 and I-264 interchange is already congested and any</td>
</tr>
<tr>
<td></td>
<td>further development in this area could require major improvement to</td>
</tr>
<tr>
<td></td>
<td>the highway infrastructure, likely involving improvements to the</td>
</tr>
<tr>
<td></td>
<td>I-264 interchange. With the congestion at this location, further</td>
</tr>
<tr>
<td></td>
<td>degradation to traffic and air quality would be problematic. Indiana</td>
</tr>
<tr>
<td></td>
<td>bats have been found in many wooded areas in Jefferson County.</td>
</tr>
<tr>
<td></td>
<td>Site-specific EA: No comments received.</td>
</tr>
</tbody>
</table>

*The EA input summarized in this table is that which was specific to the Brownsboro Road, St. Joseph, and Zorn Avenue sites and is relevant to their environmental conditions.

VA consults with federally recognized tribal governments in accordance with Section 106 of the National Historic Preservation Act on issues relating to historic properties, including those of traditional religious and cultural importance. VA also consults with tribal governments on a much broader range of potential tribal concerns and issues with respect to proposed VA actions, as prescribed by Executive Order 13175, Consultation and Coordination with Indian Tribal Governments and by VA Directive 8603, Consultation and Communication with Federally-Recognized Indian Tribes.

The programmatic EA reported that VA, via a coordination and consultation letter sent by certified mail, invited federally recognized tribes that have potential ancestral ties to Jefferson County to participate in
the NEPA process, and that no response from any of these tribes was received during that EA. VA also sent letters to the Delaware Nation, Miami Tribe of Oklahoma, Peoria Tribe, and Eastern Band of Cherokee Indians inviting their comment on the draft site-specific EA. The Peoria Tribe replied that they have no objection to the proposed project at the Brownsboro Site, the Delaware Nation found no concerns for construction of the proposed facility, and no reply was received from the other two tribes. The VA letters and the Delaware Nation and Peoria Tribe responses are included in Appendix D.

6.2 Public Involvement

The public involvement process begins with scoping and continues throughout the preparation of the EIS until VA signs the record of decision. This section describes the milestones and timeframes when stakeholders are involved during the NEPA process.

The public involvement process to date for this EIS has consisted of publication of a Notice of Intent to prepare the EIS, a scoping period, and publication of a Notice of Availability of this Draft EIS. The process will continue with a 45-day public comment period on the Draft EIS, including a public meeting to accept comments on the document.

6.2.1 Notice of Intent

The Notice of Intent is the U.S. government’s means of notifying the public and interested parties of an agency’s intention to prepare an EIS for its proposed action. VA published a “Notice of Intent to Prepare an Environmental Impact Statement for a Replacement Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky” in the Federal Register on October 30, 2015. The Notice of Intent is included in Appendix C.

6.2.2 Scoping

“Scoping” is the term used in the Council on Environmental Quality (CEQ) regulations implementing NEPA (40 CFR 1501.7) to define the process for determining the scope of issues to address during the environmental analysis of an agency’s proposed action. Scoping also helps identify issues that are neither significant nor relevant to a proposal, or alternatives that are not feasible, thereby eliminating these issues or alternatives from detailed analysis.

In addition to the scoping period conducted for this EIS, extensive public input was provided by Veterans, elected officials, residents near the alternative locations, and other interested members of the public throughout the scoping and public draft reviews for the two previous EAs related to this proposal. These comments remain in the project record and have been incorporated as identified scoping issues for this EIS.

This EIS has considered all the scoping comments, whether a comment was made once or multiple times. Questions and issues raised in these scoping comments are addressed throughout this EIS, with analysis focused on a full and fair discussion of significant environmental impacts to inform the VA’s comparison of environmental impacts among the alternatives in support of the Agency’s decision that will be documented in the Record of Decision at the conclusion of the NEPA process.

6.2.2.1 Scoping Notice, Media Release, VA Website, and Direct Mail Notification

Scoping notices announcing the EIS, inviting scoping comments, and describing options for submitting scoping comments were published in the Louisville Courier-Journal on October 30, October 31, and
November 1, 2015; and were posted online on the *Courier-Journal*’s website from October 30 to November 7, 2015. The scoping notices were paid publications in the legal notice section of the newspaper.

VA also prepared a media release announcing the EIS, inviting scoping comments, and describing options for submitting scoping comments. The media release was circulated to 38 representatives of print media, radio, television, and online news sources; forwarded to the Kentucky Department of Veterans Affairs listserv, the Joint Executive Council of Veterans Organizations for the state of Kentucky, the Louisville Metro Council, local and federal elected officials, and the City of Louisville; and posted to the VA Louisville website.

On the VA website for the Louisville Robley Rex VAMC, a page is dedicated to the proposal for a replacement VAMC, at www.louisville.va.gov/newmedicalcenter. When the EIS was announced, VA posted a fact sheet on the EIS, the scoping process, and options for submitting comments.

Postcards were mailed to 301 individuals, organizations, government agencies, and elected officials on October 28, 2015, notifying them of the EIS, the scoping process, and options for submitting scoping comments.

The newspaper notice, media release, fact sheet, and postcard are included in Appendix C.

6.2.2.2 EIS Scoping Summary

The public scoping period was open for 31 days from October 30 through November 30, 2015. The scoping process provided sufficient opportunity for stakeholders to express their comments and provide meaningful input to the NEPA process. There were 63 unique comment letters, email, and website comments received; three of these letters/emails were submitted by email as well as through the mail or website. The majority of the comments focused on the details of or preference for an alternative, and the impacts related to traffic.

The 63 comment submissions raised 159 total issues, many of which were raised more than once in multiple letters, or for which a single letter submitted multiple issues within the same category. The 159 comment issues fall into the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Comment Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternatives</td>
<td>42</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>6</td>
</tr>
<tr>
<td>Air quality</td>
<td>5</td>
</tr>
<tr>
<td>Geology and soils</td>
<td>2</td>
</tr>
<tr>
<td>Hydrology and water quality</td>
<td>3</td>
</tr>
<tr>
<td>Wildlife and habitat</td>
<td>1</td>
</tr>
<tr>
<td>Noise</td>
<td>1</td>
</tr>
<tr>
<td>Land use</td>
<td>11</td>
</tr>
<tr>
<td>Socioeconomics and environmental justice</td>
<td>9</td>
</tr>
<tr>
<td>Community services</td>
<td>3</td>
</tr>
<tr>
<td>Solid waste and hazardous materials</td>
<td>4</td>
</tr>
<tr>
<td>Transportation and traffic</td>
<td>47</td>
</tr>
<tr>
<td>Utilities</td>
<td>2</td>
</tr>
<tr>
<td>General impact analysis</td>
<td>3</td>
</tr>
<tr>
<td>NEPA process</td>
<td>4</td>
</tr>
<tr>
<td>Agency coordination</td>
<td>1</td>
</tr>
<tr>
<td>Public involvement</td>
<td>4</td>
</tr>
<tr>
<td>Out of scope</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 6-2 lists the issues raised in the scoping comments, and includes several explanatory notes responding to scoping comments that are not explicitly addressed elsewhere in this EIS. A summary of the public scoping process and further details from the comments are provided in Appendix C.

Table 6-2. Summary of Scoping Comments.

<table>
<thead>
<tr>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate the future site</td>
</tr>
<tr>
<td>- in an area accessible by public transportation</td>
</tr>
<tr>
<td>- near current medical schools, doctors, and other medical care downtown</td>
</tr>
<tr>
<td>- near homeless support services</td>
</tr>
<tr>
<td>The Brownsboro Site is too small for the proposed medical center campus.</td>
</tr>
<tr>
<td>Surface parking is less expensive than parking garages and provides room for future expansion.</td>
</tr>
<tr>
<td>The new facility should be environmentally friendly.</td>
</tr>
<tr>
<td>It is a mistake to close the outpatient facilities in the Louisville VAMC Region.</td>
</tr>
<tr>
<td>All of the sites identified in the programmatic EA should be included as EIS alternatives.</td>
</tr>
<tr>
<td>Explain why VA prefers one site over another.</td>
</tr>
<tr>
<td>Cost-benefit analysis among the alternative sites.</td>
</tr>
<tr>
<td>Will there be a helipad for helicopters to be used to bring patients to the facility?</td>
</tr>
<tr>
<td>Note: VA has no current plans to have a helipad at the proposed replacement VAMC.</td>
</tr>
<tr>
<td>Will the VA pay for any damage caused by the blasting?</td>
</tr>
<tr>
<td>Concern about when VA will need to use a rear exit from the property and to Carlimar Lane.</td>
</tr>
<tr>
<td>Veterans do not want the Brownsboro location.</td>
</tr>
<tr>
<td>Veterans prefer the Zorn Avenue location.</td>
</tr>
<tr>
<td>Supposedly the Brownsboro site has been bought - why is VA considering the St. Joseph site?</td>
</tr>
<tr>
<td>The studies have been done. Build on the Brownsboro Site.</td>
</tr>
<tr>
<td>Veterans for the most part do not live in this area.</td>
</tr>
<tr>
<td>Note: As stated in Section 1.1, the Louisville VAMC serves Veterans from a 35-county area in western Kentucky and southern Indiana. It does not serve any one Louisville area or neighborhood.</td>
</tr>
<tr>
<td>If there was a fix for the traffic flow, I would be willing to reconsider my position.</td>
</tr>
<tr>
<td>Oppose Brownsboro Site alternative.</td>
</tr>
<tr>
<td>Support St. Joseph Site alternative.</td>
</tr>
<tr>
<td>Support keeping facility on Zorn Avenue and adding a parking garage.</td>
</tr>
<tr>
<td>Support a downtown location that would centralize services accessible to all.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerns about appearance of campus and structures.</td>
</tr>
<tr>
<td>The many story buildings and parking garage is really out of character with this residential area at Brownsboro.</td>
</tr>
<tr>
<td>Appropriate planting of trees.</td>
</tr>
<tr>
<td>Light pollution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>The addition of the hospital at the Brownsboro site will increase pollution.</td>
</tr>
<tr>
<td>The additional traffic should be analyzed regarding air quality changes to the surrounding area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geology and Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concern for sinkholes causing structural instability.</td>
</tr>
<tr>
<td>The 4906 Brownsboro Road site has two different layers of limestone, both of which offgas radon gas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrology and Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking for 3000 cars will require at least 20 acres of land and the runoff and heat generated would be an environmental hazard.</td>
</tr>
<tr>
<td>Concern for drainage issues, runoff causing habitat destruction, and effects to adjacent subdivision.</td>
</tr>
<tr>
<td>Concern for impacts to structural integrity due to shallow groundwater.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wildlife and Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife will be displaced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concern for noise affecting the subdivision.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land Use</th>
</tr>
</thead>
</table>

Chapter 6. Agency Coordination and Public Involvement
Table 6-2. Summary of Scoping Comments.

<table>
<thead>
<tr>
<th>Summary of Scoping Comments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The planned hospital does not blend with the residential neighborhoods it borders.</td>
</tr>
<tr>
<td>It does not fall into the planned development guidelines.</td>
</tr>
<tr>
<td>The area is residential and has no multi-story non-residential buildings. The proposed project would profoundly change the longstanding character of the area and Eastern Jefferson county.</td>
</tr>
</tbody>
</table>

Socioeconomics and Environmental Justice

As a neighbor, I would welcome a nicely designed suitably situated VA Hospital on this site if it enhanced property values while keeping traffic flow at a bearable level.

Environmental justice and socioeconomics impact analyses have not been adequately evaluated.

Concern about effect on property values.

Having a hospital facility of this magnitude here is likely to cause a change in the nature of the businesses in the area.

Community Services

Additional risk to other people in the area if the emergency services are being used at the VA and are not available when other people need them.

When families and visitors come in from out of town, where will they stay?

Adequate funding for the needed level of emergency services.

Solid Waste and Hazardous Materials

Solid and hazardous waste in residential area.

Questions about existing site contamination from Agent Orange at the Zorn Avenue campus.

Transportation and Traffic

Existing traffic in the Brownsboro area is too congested and would get worse with the VAMC located there.

Conduct detailed traffic studies at each location.

Public transportation should be considered.

The slip ramp and traffic light have created adverse impacts.

Traffic for the VBA and clinic patients must also be considered.

Veterans access.

Adequacy of interchange improvements for relieving traffic congestion.

Utilities

Solar panels should be placed on the roof of the hospital.

Utility infrastructure costs.

General Impact Analysis

VA's ownership of the Brownsboro Rd site should not be a factor in the EIS.

Note: VA's ownership of the Brownsboro Site is not a factor in identifying and comparing the environmental impacts of the alternatives evaluated in this EIS.

Examine all construction and operation impacts.

NEPA Process

Objectivity of EIS contractor.

Note: An EIS (or EA) is not an audit. A federal agency contracts with firms when the agency does not have the staff resources or full range of needed expertise to prepare a NEPA document in-house. The agency is the author of record of a NEPA document.

Full EIS needed.

Agency Coordination

Input from local agencies needed.

Note: City and county agencies were notified of VA's intent to prepare an EIS and the opportunity to submit scoping comments; see Section 6.1. They have also been notified of the availability of the Draft EIS for review and comment, and their input will be considered in preparing the Final EIS.

Public Involvement

One request for in-person scoping meeting.

Note: A single request for an in-person meeting was received. VA determined that the published notices and fact sheets adequately updated the issues and status of the EIS, and therefore a meeting was not held.

EA and EIS comments from the public should be reported correctly in the EIS documentation.
Table 6-2. Summary of Scoping Comments.

<table>
<thead>
<tr>
<th>Summary of Scoping Comments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Scope of EIS</td>
</tr>
<tr>
<td>Inadequate medical treatment for Veterans.</td>
</tr>
<tr>
<td>Future use of Zorn Avenue campus.</td>
</tr>
<tr>
<td>Sell Brownsboro Site.</td>
</tr>
<tr>
<td>Develop Brownsboro Site into a national cemetery.</td>
</tr>
<tr>
<td>Veterans should be able to go to any doctor or hospital they wish and carry a "Vet" insurance card that directly bills to the VA.</td>
</tr>
<tr>
<td>Price paid for Brownsboro Site.</td>
</tr>
</tbody>
</table>

6.2.2.3 Comments on Draft Programmatic EA

On the draft programmatic EA, VA received 28 verbal public comments, 109 written comments from individuals, 144 petition signatures/emails, and input from Greater Louisville, Inc., the City of Indian Hills, and Louisville Metro Council. Many of the responders provided similar comments and many provided multiple comments, which were addressed in Appendix D to the final programmatic EA. These comments raised issues that were categorized as listed below, with details of the comments (as summarized in that EA) provided in Appendix C.

- Traffic/transportation
- Site selection
- Water resources
- Communications
- Socioeconomics/environmental justice
- Aesthetics
- Air quality
- Noise
- Land use
- General

6.2.2.4 Scoping Comments and Comments on Draft Site-Specific EA

Nineteen individuals provided verbal comments at the public scoping meeting and 23 written comment letters were received. The issues raised in these comments fell into the following categories with details of the comments provided in Appendix C.

- Purpose and need
- Proposed action
- Alternatives
- Aesthetics
- Air quality
- Geology and soils
- Hydrology and water quality
- Noise
- Land use
- Socioeconomics
- Community services
- Transportation and parking
- Utilities
- Environmental justice
- Cumulative impacts
- NEPA process
- Outside scope of NEPA or proposed action
VA received 125 comments, including verbal comments at public meetings, on the draft site-specific EA, from 97 commenters (several commenters provided multiple submissions). The issues raised in these comments fell into the following categories with details of the comments provided in Appendix C.

- Purpose and need
- Alternatives
- Aesthetics
- Air quality
- Hydrology and water quality
- Noise
- Land use
- Floodplains and wetlands
- Socioeconomics and environmental justice
- Community services
- Solid waste and hazardous materials
- Transportation and traffic
- Utilities
- General comments on impact analysis
- NEPA process
- Agency coordination
- Public involvement
- Out of scope of NEPA analysis

All in-scope issues listed in Sections 6.2.2 through 6.2.4 are addressed in this EIS to the extent they are relevant to the NEPA analysis and support identification and comparison of the environmental impacts of the alternatives.

6.3 Draft EIS Comment Period

VA and the Environmental Protection Agency published a Notice of Availability (NOA) of the Draft EIS in the Federal Register concurrently on October 27, 2016, inviting public comments on the content of this document. Publication in the Federal Register officially started a 45-day public comment period running through December 12, 2016.

The Draft EIS was published and made available for viewing on the VA Louisville Website at: www.louisville.va.gov/newmedicalcenter/ and at the Westport, St. Matthew Eline, and Main Branches of the Louisville Public Library system. 348 stakeholders who had previously signed on to the project mailing list were mailed a postcard with the NOA of the Draft EIS, including 39 to government (federal, state, local) agencies; 72 email notifications were also sent at the request of individual stakeholders.

VA hosted two public comment meetings in Louisville in a location convenient to the existing facility on Zorn Avenue and in close proximity to the preferred location at Brownsboro Road, as identified in the DEIS. VA’s public outreach plan for the Draft EIS included publication of a Public Notice of Draft EIS availability and scheduled public meeting information in the Louisville Courier Journal newspaper, to be published on November 11, 12, and 13, 2016. A mix-up by the newspaper prevented the notice from being published prior to the public meetings. However, VA’s online postings about the Draft EIS and the public comment process on the VA Louisville webpage (along with other project updates and information), and releases to the various media outlets covering the service area, helped to ensure widespread coverage. VA estimates that over 250 persons were in attendance at the two public comment
meetings (an identical afternoon and evening meeting on the same day, to accommodate schedules of interested parties) held as follows:

Louisville, Kentucky: November 15, 2016, 12-2 pm and 6-8 pm (Christ Church United Methodist Church on Brownsboro Road).

The meetings provided stakeholders an opportunity to comment on the potential environmental, social, and economic impacts as described in the Draft EIS. The meeting format consisted of three parts: (1) an open house with poster displays, handouts and a traffic simulation station; (2) a formal presentation to explain the purpose of and need for the reconfiguration proposal, describe the alternatives, and summarize the analysis and potential impacts associated with each alternative; and (3) opportunity for public comment. The verbal comments at each meeting were transcribed by a professional court reporter. Throughout the public comment period, comments could also be submitted in person at the public meetings, submitted by email to LouisvilleReplacementHospitalComments@va.gov, online at www.Louisville-EIS.com, or by U.S. Postal Service mail to Robley Rex VAMC, Attn: Replacement VAMC Activation Team Office (Ms. Judy Williams), 800 Zorn Avenue, Louisville, KY 40206.

The public comment period was extended an additional 30 days to January 11, 2017 in response to public requests. Notice was published in the Federal Register on December 13, 2016 and the Louisville Courier Journal on December 11, 2016.

Altogether, VA Louisville received comments from over 800 individuals, government agencies, other organizations and the Miami Tribe of Oklahoma. Government agencies included the Environmental Protection Agency, U.S. Fish and Wildlife Service, Kentucky Department of Environmental Protection, local cities (mayors and metro council representatives), and county Chambers of Commerce. Two law firms also provided substantive comments on behalf of the “Cities” of Crossgate, Graymoor-Devondale, and Old Brownsboro Place, and Grow Smart Louisville. All public comments and VA responses to comments received during the comment period are provided in Appendix E of this Final EIS. VA responses include modifications to the analysis or factual corrections to the EIS where appropriate, as well as explanations why a particular requested action is not being taken (where no change was made to the EIS). The comments resulted in many changes in the Final EIS, including, but not limited to, the following:

- Expanded discussion of the original site selection process to further support the range of alternatives evaluated and reasons for dismissal of other alternatives;
- Restructuring of Chapter 2 to improve the description of alternatives;
- Expanded discussion of local impacts (e.g., immediately adjacent communities) for both alternatives and for multiple resource areas where appropriate; and
- New qualitative analysis of traffic impacts associated with a no build/no development scenario at Brownsboro.
7.0 List of Preparers

<table>
<thead>
<tr>
<th>U.S. Department of Veterans Affairs Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Odorizzi, PE, CCM</td>
</tr>
<tr>
<td>Project Manager</td>
</tr>
<tr>
<td>Office of Construction & Facilities Management – Central Region</td>
</tr>
<tr>
<td>Glenn Wittman, PG</td>
</tr>
<tr>
<td>Regional Environmental Engineer</td>
</tr>
<tr>
<td>Office of Construction & Facilities Management – Central Region</td>
</tr>
</tbody>
</table>

Contractor Staff (Labat Environmental, Inc. Team)

<table>
<thead>
<tr>
<th>Name</th>
<th>EIS Sections</th>
<th>Education</th>
<th>Years of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labat Environmental, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christine Modovsky, REM, CEA</td>
<td>Purpose and Need</td>
<td>MS, Environmental Science</td>
<td>28</td>
</tr>
<tr>
<td>Contractor Team Project Director</td>
<td>Alternatives</td>
<td>BS, Environmental Science (Chemistry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wildlife and Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Justice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan Smillie</td>
<td>Purpose and Need</td>
<td>M.En, Environmental Science</td>
<td>34</td>
</tr>
<tr>
<td>Contractor Team Project Director</td>
<td>Alternatives</td>
<td>B.S., Biology</td>
<td></td>
</tr>
<tr>
<td>(effective 7-1-16)</td>
<td>Cultural Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Schlagel, P.E.</td>
<td>Purpose and Need</td>
<td>BS, Chemical Engineering</td>
<td>21</td>
</tr>
<tr>
<td>Contractor Team Deputy Project Director</td>
<td>Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geology and Soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrology and Water Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floodplains and Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid Waste/Hazardous Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mary Peters</td>
<td>Aesthetics</td>
<td>J.D, Law</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Land Use</td>
<td>BS, Fish/Wildlife Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Community Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patrick Thompson</td>
<td>Cultural Resources</td>
<td>MHP, Historic Preservation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPA., Public Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Environmental / Transportation Management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA, Political Science</td>
<td></td>
</tr>
<tr>
<td>Lucy L. Swartz, Esq.</td>
<td>Purpose and Need</td>
<td>J.D, Law</td>
<td>30+</td>
</tr>
<tr>
<td></td>
<td>NEPA Compliance</td>
<td>BA, Political Science and Administrative Studies</td>
<td></td>
</tr>
</tbody>
</table>

Palmer Engineering Company

<table>
<thead>
<tr>
<th>Name</th>
<th>EIS Sections</th>
<th>Education</th>
<th>Years of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Lindeman, PE, LS</td>
<td>Transportation and Traffic</td>
<td>BS, Civil Engineering</td>
<td>30</td>
</tr>
<tr>
<td>Ashley McLain, PE, PTOE</td>
<td>Transportation and Traffic</td>
<td>BS, Civil Engineering</td>
<td>9</td>
</tr>
<tr>
<td>Stephen Sewell</td>
<td>Transportation and Traffic</td>
<td>B.S. Civil Engineering</td>
<td>16</td>
</tr>
</tbody>
</table>

TRC Companies, Inc. (Draft EIS)
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Education</th>
<th>Page</th>
</tr>
</thead>
</table>
| Christopher Moore, AICP | Socioeconomics | MS, Community and Regional Planning
BA, Environmental, Population, and Organismal Biology and Environmental; Conservation | 19 |
| Kim Howlett | Socioeconomics | BA, Planning; Business and Economics | 35 |
| Kathleen Cooney | Socioeconomics | MA, Geography
BA, Communications Arts | 14 |
8.0 REFERENCES CITED

Chapter 1 References

Chapter 2 References

Chapter 3 References

3.1 Aesthetics

3.2 Air Quality

APCD 2012. Title V Permit, Louisville VAMC, Permit No. 29112-12-O/C. Louisville Metro Air Pollution Control District.

EPA 2015a. General Conformity, Basic Information. U.S. Environmental Protection Agency.

3.3 Cultural Resources and Historic Properties

Cultural Resource Analysts, Inc. (CRA) 2015. Letter from C. Niquette President, CRA, to Craig Potts Kentucky State Historic Preservation Officer transmitting the Cultural Historic Resource Survey for the Proposed Brownsboro Road Veterans Affairs Medical Center in Louisville, Jefferson County, Kentucky; copy of site specific VA Environmental Assessment; and a Section 106 Cover Sheet from the Department of Veteran Affairs. January 12, 2015.

Kentucky Heritage Council 2011. Letter from Mark Dennen, Executive Director and State Historic Preservation Officer, to TTL Associates, Inc. regarding Intergovernment and interagency coordination of environmental planning for the Department of Veterans Affairs Proposed Medical Center 25 or More Acres on One of Five Potential Sites in Louisville, Jefferson County, Kentucky. April 25, 2011.

Kentucky Heritage Council. Letter from Craig A. Potts, Executive Director, State Historic Preservation Officer, to Christine Modovsky, Labat Environmental Inc., providing comments on a
Cultural Historic Resource Survey for the Proposed Brownsboro Road Veterans Affairs Medical Center in Louisville, Jefferson County, Kentucky. April 8, 2015.

VA 2015. Letter from George Odorizzi, Project Manager, to Craig Potts, Kentucky State Historic Preservation Officer, transmitting a copy of the Draft Site-Specific Environmental Assessment: Proposed Replacement VA Medical Center Campus, Louisville, Kentucky, for review and comment. January 6, 2015.

3.4 Geology and Soils

3.5 Hydrology and Water Quality

3.6 Wildlife and Habitat

FWS 2011b. FWS 2011-B-0660; Blue Equity, LLC, Property at 4906 Brownsboro Road, Louisville, Kentucky. Electronic mail from J. Gruhala, U.S. Fish and Wildlife Service, Frankfort, KY. June 15, 2011.

3.7 Noise

3.8 Land Use

LMG 2000. Cornerstone 2020 Louisville and Jefferson County Comprehensive Plan. Louisville and
Jefferson County Planning Commission. Louisville Metro Government. Available at:
2000.

LMG 2006. Land Development Code for all of Louisville-Jefferson County, Kentucky. Louisville Metro
Available at: https://louisvilleky.gov/government/planning-design/land-development-code.
March 2006.

Louisville Metro Planning and Design Services 2012. Amendment to Certificate of Land Use Restriction.
Relating to VA property at 4906 Brownsboro Road (Midlands Site), Louisville, Kentucky.

VA 2013. Site Development Design Manual. U.S. Department of Veterans Affairs, Office of Construction
and Facilities Management. February 2013. Available at:

3.9 Floodplains and Wetlands

AMEC 2014. Report of Geotechnical Exploration, Proposed VA Medical Center Campus, Brownsboro
Road, Louisville, KY. Prepared for URS Corporation. September 12, 2014.

AmLegal 2015. Louisville-Jefferson County Metro Government, Title XV: Land Usage, Chapter 157:

TTL 2012a. Wetlands Determination: Proposed Louisville VA Medical Center - Brownsboro Site,
Southeast Corner of Brownsboro Road and Interstate 265, Louisville, Kentucky. Prepared

TTL 2012b. Wetlands Delineation: Proposed Louisville VAMC, St. Joseph Site, Factory Lane,
Louisville, Kentucky. Prepared for U.S. Department of Veterans Affairs. February 17,
2012.

3.10 Socioeconomics

http://beta.bls.gov/dataQuery/find?st=0&r=20&more=0.

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_SF1DP1&prodType=table.

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_CP03&prodType=table.

https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

Census 2017b. American Community Survey (ACS) Selected Housing Characteristics 2011-2015 (Median value, owner occupied units, 2015). Available at:

EPA2017. U.S. Environmental Protection Agency EJSCREEN ACS Summary Report for 0.5 mile, 1.0 mile and 3.0 mile radius (total population) for Brownsboro and St. Joseph Sites. March 4. Based on US Census Bureau American Community Survey data 2010-2014. Available at:
https://www.epa.gov/ejscreen (mapping tool)

3.11 Community Services

3.12 Solid Waste and Hazardous Materials

3.13 Transportation and Traffic

3.14 Utilities

MSD 2012. MSD General Services Brochure. Louisville and Jefferson County Metropolitan Sewer District.

3.15 Environmental Justice

http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

Environmental Protection Agency 2017. EJSCREEN ACS Summary Report for 0.5 mile, 1.0 mile and 3.0 mile radius (minority and low income populations) for Brownsboro and St. Joseph Sites. March 4. Based on US Census Bureau American Community Survey data. Available at: https://www.epa.gov/ejscreen

3.16 Other Past, Present, and Reasonably Foreseeable Projects

Chapter 4 References

4.1 Aesthetics

4.2 Air Quality

4.3 Cultural Resources and Historic Properties

4.4 Geology and Soils

4.5 Hydrology and Water Quality

4.6 Wildlife and Habitat

4.7 Noise

4.10 Socioeconomics

4.11 Community Services

4.13 Transportation and Traffic

4.14 Utilities

4.15 Environmental Justice

This page intentionally left blank.
9.0 GLOSSARY

Aesthetic resources: The components of the environment as perceived through the visual sense only. Aesthetic specifically refers to beauty in both form and appearance.

Affected environment: A portion of the NEPA document that succinctly describes the environment of the area(s) to be affected or created by the alternatives under consideration. Includes the environmental and regulatory setting of the proposed action.

Alternative: A reasonable way to fix the identified problem or satisfy the stated need.

Attainment area: An area that the Environmental Protection Agency has designated as being in compliance with one or more of the National Ambient Air Quality Standards for sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, lead, and particulate matter. An area may be in attainment for some pollutants but not for others.

Conformity analysis: The Clean Air Act requires the Environmental Protection Agency to promulgate rules to ensure that federal actions conform to the appropriate state implementation plans (SIP) for air quality. Two sets of rules (one for transportation and one for all other actions) developed by EPA establish the criteria and procedures governing the determination of this conformity. A conformity analysis follows these criteria and procedures to quantitatively assess whether a proposed federal action confirms with the SIP.

Council on Environmental Quality (CEQ): Established by Congress within the Executive Office of the President as part of the National Environmental Policy Act of 1969, CEQ coordinates federal environmental efforts and works closely with agencies and other White House offices in the development of environmental policies and initiatives. The Council's Chair, who is appointed by the President with the advice and consent of the Senate, serves as the principal environmental policy adviser to the President. The CEQ reports annually to the President on the state of the environment, oversees federal agency implementation of the environmental impact assessment process, and acts as a referee when agencies disagree over the adequacy of such assessments.

Criteria pollutant: An air pollutant that is regulated by National Ambient Air Quality Standards. Criteria pollutants include sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, lead, and two size classes of particulate matter, PM$_{10}$ and PM$_{2.5}$ New pollutants may be added to, or removed from, the list of criteria pollutants as more information becomes available.

Critical habitat: Habitat essential to the conservation of an endangered or threatened species that has been designated as critical by the U.S. Fish and Wildlife Service or the National Marine Fisheries Service following the procedures outlined in the Endangered Species Act and its implementing regulations.

Cumulative effect (cumulative impact): The impact on the environment that results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.

Decibel (dB): A unit for expressing the relative intensity of sounds on a logarithmic scale from zero for the average least perceptible sound to about 130 for the average level at which sound
causes pain to humans. For traffic and industrial noise measurements, the A-weighted decibel (dBA), a frequency-weighted noise unit, is widely used. The A-weighted decibel scale corresponds approximately to the frequency response of the human ear and thus correlates well with the loudness perceived by people.

Direct effects: Caused by the action and occur at the same time and place.

Effects: Effects and impacts, as used in NEPA, are synonymous. Effects include ecological (such as the effects on natural resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic, cultural, economic, social, or health, whether direct, indirect, or cumulative. Effects may also include those resulting from actions that may have both beneficial and detrimental effects, even if on balance the agency believes that the effect will be beneficial.

Endangered species: Plants or animals that are in danger of extinction through all or a significant portion of their ranges and that have been listed as endangered by the U.S. Fish and Wildlife Service or the National Marine Fisheries Service following the procedures outlined in the Endangered Species Act and its implementing regulations.

Environmental assessment (EA): A concise public document for which a federal agency is responsible that serves to briefly provide sufficient evidence and analysis for determining whether to prepare an environmental impact statement (EIS) or a finding of no significant impact; aid an agency's compliance with NEPA when no environmental impact statement is necessary; or facilitate preparation of an EIS when one is necessary. Includes brief discussions of the need for the proposal, of alternatives, of the environmental impacts of the proposed action and alternatives, and a listing of agencies and persons consulted.

Environmental impact statement (EIS): A detailed written statement required by Section 102(2)(C) of NEPA, analyzing the environmental impacts of a proposed action, adverse effects of the project that cannot be avoided, alternative courses of action, short-term uses of the environment versus the maintenance and enhancement of long-term productivity, and any irreversible and irretrievable commitment of resources.

Environmental justice: The fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. Fair treatment means that no group of people, including racial, ethnic, or socioeconomic groups, should bear a disproportionate share of the negative environmental consequences resulting from industrial, municipal, and commercial operations or the execution of federal, state, local, and tribal programs and policies. Executive Order 12898 directs federal agencies to make achieving environmental justice part of their missions by identifying and addressing disproportionately high and adverse effects of agency programs, policies, and activities on minority and low-income populations.

Finding of no significant impact (FONSI): A public document issued by a federal agency briefly presenting the reasons why an action for which the agency has prepared an environmental assessment has no potential to have a significant effect on the human environment and, thus, will not require preparation of an environmental impact statement.
Floodplain: The lowland and relatively flat areas adjoining inland and coastal waters including flood-prone areas of offshore islands, including at a minimum, that area subject to a one percent or greater chance of flooding in any given year.

Fugitive emissions: Emissions that do not pass through a stack, vent, chimney, or similar opening where they could be captured by a control device. Any air pollutant emitted to the atmosphere other than from a stack. Sources of fugitive emissions include pumps; valves; flanges; seals; area sources such as ponds, lagoons, landfills, and piles of stored material (such as coal); and road construction areas or other areas where earthwork is occurring.

Hazardous material: Any material that poses a threat to human health and/or the environment. Hazardous materials are typically toxic, corrosive, ignitable, explosive, or chemically reactive.

Historic property: Any prehistoric or historic district, site, building, structure, or object included in, or eligible for inclusion in, the National Register of Historic Places maintained by the Secretary of the Interior. This term includes artifacts, records, and remains that are related to and located within such properties. The term includes properties of traditional religious and cultural importance to an Indian tribe or Native Hawaiian organization and that meet the National Register criteria.

Impacts: see Effects.

Impervious surface: A hard surface area that either prevents or retards the entry of water into the soil or causes water to run off the surface in greater quantities or at an increased rate of flow. Common impervious surfaces include, but are not limited to, rooftops, walkways, patios, driveways, parking lots, storage areas, concrete or asphalt paving, and gravel roads.

Indirect effects: Caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth-inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate, and related effects on air and water and other natural systems, including ecosystems.

Karst terrain: Regions where the type of rock below the land surface can naturally be dissolved by groundwater circulating through them. Karst terrain is characterized by springs, caves, and sinkholes. About 20 percent of the land surface in the U.S. is classified as karst. Most of the groundwater flow and transport occurs through a network of interconnected fissures, fractures, and conduits in a relatively low-permeability rock matrix (summarized from www.usgs.gov).

Level of service: A standard measurement used by transportation officials that reflects the relative ease of traffic flow on a scale of A to F, with free-flow being rated LOS-A and congested conditions rated as LOS-F.

Mitigation: Includes (a) avoiding the impact altogether by not taking a certain action or parts of an action; (b) minimizing impacts by limiting the degree or magnitude of the action and its implementation; (c) rectifying the impact by repairing, rehabilitating, or restoring the affected environment; (d) reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action; and (e) compensating for the impact by replacing or providing substitute resources or environments.
National Ambient Air Quality Standards (NAAQS): Standards defining the highest allowable levels of certain pollutants in the ambient air (i.e., the outdoor air to which the public has access). Primary standards are established to protect public health; secondary standards are established to protect public welfare (for example, visibility, crops, animals, buildings).

National Pollutant Discharge Elimination System (NPDES): A provision of the Clean Water Act that prohibits discharge of pollutants into waters of the United States unless a special permit is issued by the Environmental Protection Agency, a state, or, where delegated, a tribal government on an Indian reservation.

National Register of Historic Places: The nation’s inventory of known historic properties that have been formally listed by the National Park Service (NPS). The National Register of Historic Places is administered by the NPS on the behalf of the Secretary of the Interior. National Register listings include districts, landscapes, sites, buildings, structures, and objects that meet the set of criteria found in 36 CFR 60.4.

No action alternative: The alternative where current conditions and trends are projected into the future without another proposed action.

Non-attainment area: An area that the Environmental Protection Agency has designated as not meeting (that is, not being in attainment of) one or more of the National Ambient Air Quality Standards for sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, lead, and particulate matter. An area may be in attainment for some pollutants, but not for others.

Particulate matter (PM), PM$_{10}$, PM$_{2.5}$: Any finely divided solid or liquid material, other than uncombined (that is, pure) water. A subscript denotes the upper limit of the diameter of particles included. Thus, PM$_{10}$ includes only those particles equal to or less than 10 micrometers (0.0004 inch) in diameter; PM$_{2.5}$ includes only those particles equal to or less than 2.5 micrometers (0.0001 inch) in diameter.

Runoff: The portion of rainfall, melted snow, or irrigation water that flows across ground surface and is eventually returned to streams. Runoff can pick up pollutants from the air or the land and carry them to streams, lakes, and oceans.

Scope: Consists of the range of actions, alternatives, and impacts to be considered in an environmental analysis. The scope of an individual statement may depend on its relationships to other statements (also see tiering).

Scoping: An early and open process for determining the extent and variety of issues to be addressed and for identifying the significant issues related to a proposed action (40 CFR §1501.7). The scoping process helps not only to identify significant environmental issues deserving of study, but also to deemphasize insignificant issues, narrowing the scope of the NEPA process accordingly, and for early identification of what are and what are not the real issues (40 CFR §1500.5(d)). The scoping process identifies relevant issues related to a proposed action through the involvement of all potentially interested or affected parties (affected federal, state, and local agencies; recognized Indian tribes; interest groups, and other interested persons) in the environmental analysis and documentation.

Solid waste: Non-liquid, non-soluble materials ranging from municipal garbage to industrial wastes that contain complex and sometimes hazardous substances. Solid wastes also include sewage.
sludge, agricultural refuse, demolition wastes, and mining residues. Technically, solid waste also refers to liquids and gases in containers.

Tiering: Refers to the coverage of general matters in broader environmental impact statements (EIS) (such as national program or policy statements) with subsequent narrower statements or environmental analyses (such as regional or basin-wide program statements or ultimately site-specific statements) incorporating by reference the general discussions and concentrating solely on the issues specific to the statement subsequently prepared. Tiering in such cases is appropriate when it helps the lead agency to focus on the issues that are ripe for decision and exclude from consideration issues already decided or not yet ripe.

Wetlands: Those areas that are inundated by surface water or groundwater with a frequency sufficient to support, and under normal circumstances do, or would support, a prevalence of vegetative or aquatic life that requires saturated or seasonally saturated soil conditions for growth and reproduction. Wetlands generally include swamps, marshes, bogs, and similar areas. Jurisdictional wetlands are those wetlands protected by the Clean Water Act. They must have a minimum of one positive wetland indicator from each parameter (vegetation, soil, and hydrology). The U.S. Army Corps of Engineers requires a permit to fill or dredge jurisdictional wetlands.
This page intentionally left blank.